Analyzing the impact of learning inputs on near-to-far terrain traversability estimation

Ho, Ken, Peynot, Thierry, & Sukkarieh, Salah (2014) Analyzing the impact of learning inputs on near-to-far terrain traversability estimation. In Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA 2014), Hong Kong, China.

View at publisher (open access)

Abstract

With the increasing need to adapt to new environments, data-driven approaches have been developed to estimate terrain traversability by learning the rover’s response on the terrain based on experience. Multiple learning inputs are often used to adequately describe the various aspects of terrain traversability. In a complex learning framework, it can be difficult to identify the relevance of each learning input to the resulting estimate. This paper addresses the suitability of each learning input by systematically analyzing the impact of each input on the estimate. Sensitivity Analysis (SA) methods provide a means to measure the contribution of each learning input to the estimate variability. Using a variance-based SA method, we characterize how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We propose an approach built on Analysis of Variance (ANOVA) decomposition to examine the prediction made in a near-to-far learning framework based on multi-task GP regression. We demonstrate the approach by analyzing the impact of driving speed and terrain geometry on the prediction of the rover’s attitude and chassis configuration in a Marsanalogue terrain using our prototype rover Mawson.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

45 since deposited on 12 Mar 2015
8 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 82456
Item Type: Conference Paper
Refereed: Yes
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 [please consult the author]
Deposited On: 12 Mar 2015 22:59
Last Modified: 18 Mar 2015 19:43

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page