Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation

Vo, Brenda N., Drovandi, Christopher C., Pettitt, Anthony N., & Simpson, Matthew J. (2015) Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation. Mathematical Biosciences, 263, pp. 133-142.

View at publisher


Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.

Impact and interest:

3 citations in Scopus
Search Google Scholar™
3 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

15 since deposited on 23 Apr 2015
14 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 82534
Item Type: Journal Article
Refereed: Yes
Keywords: Approximate Bayesian computation, Cell diffusivity, Cell proliferation, Random walk model, Collective cell spreading
DOI: 10.1016/j.mbs.2015.02.010
ISSN: 0025-5564
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > APPLIED MATHEMATICS (010200) > Biological Mathematics (010202)
Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > STATISTICS (010400) > Applied Statistics (010401)
Divisions: Current > Research Centres > ARC Centre of Excellence for Mathematical & Statistical Frontiers (ACEMS)
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Mathematical Sciences
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2015 Elsevier
Copyright Statement: This is the author’s version of a work that was accepted for publication in Mathematical Biosciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mathematical Biosciences, [VOL 263, (2015)] DOI: 10.1016/j.mbs.2015.02.010
Deposited On: 23 Apr 2015 22:28
Last Modified: 07 Jun 2016 04:26

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page