Performance evaluation of cloud-based parallel computing

Nakai, Yuto, Perrin, Dimitri, Ohsaki, Hiroyuki, & Walshe, Ray (2013) Performance evaluation of cloud-based parallel computing. In 2013 IEEE 37th Annual Computer Software and Applications Conference (COMPSAC 2013), IEEE Computer Society, Kyoto, Japan, pp. 351-355.

View at publisher


As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.

Impact and interest:

1 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

22 since deposited on 15 Apr 2015
6 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 82682
Item Type: Conference Paper
Refereed: Yes
Additional URLs:
DOI: 10.1109/COMPSACW.2013.62
ISBN: 9781467364942
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 15 Apr 2015 01:45
Last Modified: 22 Apr 2015 11:17

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page