Static load bearing exercises of individuals with transfemoral amputation fitted with an osseointegrated implant: Reliability of kinetic data

Vertriest, Sofie, Coorevits, Pascal, Hagberg, Kerstin, Brånemark, Rickard, Häggström, Eva, Vanderstraeten, Guy, & Frossard, Laurent (2014) Static load bearing exercises of individuals with transfemoral amputation fitted with an osseointegrated implant: Reliability of kinetic data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(3), pp. 423-430.

View at publisher


This study aimed at presenting the intra-tester reliability of the static load bearing exercises (LBEs) performed by individuals with transfemoral amputation (TFA) fitted with an osseointegrated implant to stimulate the bone remodelling process. There is a need for a better understanding of the implementation of these exercises particularly the reliability. The intra-tester reliability is discussed with a particular emphasis on inter-load prescribed, inter-axis and inter-component reliabilities as well as the effect of body weight normalisation. Eleven unilateral TFAs fitted with an OPRA implant performed five trials in four loading conditions. The forces and moments on the three axes of the implant were measured directly with an instrumented pylon including a six-channel transducer. Reliability of loading variables was assessed using intraclass correlation coefficients (ICCs) and percentage standard error of measurement values (%SEMs). The ICCs of all variables were above 0.9 and the %SEM values ranged between 0 and 87%. This study showed a high between-participants’ variance highlighting the lack of loading consistency typical of symptomatic population as well as a high reliability between the loading sessions indicating a plausible correct repetition of the LBE by the participants. However, these outcomes must be understood within the framework of the proposed experimental protocol.

Impact and interest:

2 citations in Scopus
2 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

86 since deposited on 07 Apr 2015
36 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 83154
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: Lower limb amputation, Rehabilitation, Osseointegration, Bone-anchorage prosthesis, Load bearing, Reliability
DOI: 10.1109/TNSRE.2014.2337956
ISSN: 1534-4320
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Rehabilitation Engineering (090305)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Exercise & Nutrition Sciences
Copyright Owner: Copyright 2013 IEEE
Copyright Statement: Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Deposited On: 07 Apr 2015 05:00
Last Modified: 05 Jun 2015 07:14

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page