Synthesis of organoclays: A critical review and some unresolved issues

He, Hongping, Ma, Lingya, Zhu, Jianxi, Frost, Ray L., Theng, Benny K.G., & Bergaya, Faïza (2014) Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 100, pp. 22-28.

View at publisher


The synthesis of organoclays (OC) by intercalation of quaternary ammonium cation (QAC) into expanding clay minerals, notably montmorillonite (Mt), has attracted a great deal of attention during the past two decades. The OC have also found applications in the manufacture of clay polymer nanocomposites (CPN) and environmental remediation. Despite the wealth of information that exists on the formation and properties of OC, some problems remain to be resolved. The present contribution is an attempt at clarifying two outstanding issues, based on the literature and experimental data obtained by the authors over the past years. The first issue concerns the relationship between the cation exchange capacity (CEC) of the Mt and the basal spacing of the OC which, in turn, is dependent on the concentration and the nature of the added QAC. At a concentration less than 1 CEC, organo-Mt (OMt) formed using the QAC with a short alkyl chain length with nc < 16 (e.g., dodecyl trimethylammonium) gives basal spacings of 1.4–1.6 nm that are essentially independent of the CEC. However, for long-chain QAC with nc ≥ 16 (e.g., hexadecyl trimethylammonium), the basal spacing varies with the QAC concentration. For Mt with a CEC of 80–90 meq/100 g, the basal spacing of the OC increases gradually with the CEC and shows a sudden (stepwise) increase to 3.2–3.8 nm at a QAC concentration of 1.5 CEC and to 3.5–4.0 nm at a concentration of 2.0 CEC. The second issue pertains to the “locking” effect in QAC- and silane-modified pillared interlayered clays (PILC) and Mt. For silylated Mt, the “locking” effect results from the covalent bonding of silane to two adjacent layers within a single clay mineral particle. The same mechanism can operate in silane-grafted PILC but in this case, the “locking” effect may primarily be ascribed to the pillaring of adjacent basal surfaces by metal hydr(oxides).

Impact and interest:

19 citations in Scopus
Search Google Scholar™
18 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 83611
Item Type: Journal Article
Refereed: Yes
Keywords: Basal spacing, Cation exchnage capacity (CEC), Organoclay (OC), Pillared interlayered clay (PILC), Locking effect, Silane grafting
DOI: 10.1016/j.clay.2014.02.008
ISSN: 0169-1317
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 Elsevier B.V.
Deposited On: 16 Apr 2015 00:49
Last Modified: 16 Apr 2015 00:49

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page