Prospective ten-month exercise intervention in premenarcheal girls: Positive effects on bone and lean mass

Morris, Fiona L., Naughton, Geraldine A., Gibbs, Joanne L., Carlson, John S., & Wark, John D. (1997) Prospective ten-month exercise intervention in premenarcheal girls: Positive effects on bone and lean mass. Journal of Bone and Mineral Research, 12(9), pp. 1453-1462.

View at publisher

Abstract

Enhancement of bone mineral acquisition during growth may be a useful preventive strategy against osteoporosis. The aim of this study was to explore the lean mass, strength, and bone mineral response to a 10-month, high-impact, strength-building exercise program in 71 premenarcheal girls, aged 9–10 years. Lean body mass, total body (TB), lumbar spine (LS), proximal femur (PF), and femoral neck (FN) bone mineral were measured using the Hologic QDR 2000+ bone densitometer. Strength was assessed using a grip dynamometer and the Cybex isokinetic dynamometer (Cybex II). At baseline, no significant difference in body composition, pubertal development, calcium intake, physical activity, strength, or bone mineral existed between groups. At completion, there were again no differences in height, total body mass, pubertal development, calcium intake, or external physical activity. In contrast, the exercise group gained significantly more lean mass, less body fat content, greater shoulder, knee and grip strength, and greater TB, LS, PF, and FN BMD (exercise: TB 3.5%, LS 4.8%, PF 4.5%, and FN 12.0%) compared with the controls (controls: TB 1.2%, LS 1.2%, PF 1.3%, and FN 1.7%). TB bone mineral content (BMC), LS BMC, PF BMC, FN BMC, LS bone mineral apparent density (BMAD), and FN bone area also increased at a significantly greater rate in the exercise group compared with the controls. In multiple regression analysis, change in lean mass was the primary determinant of TB, FN, PF, and LS BMD accrual. Although a large proportion of bone mineral accrual in the premenarcheal skeleton was related to growth, an osteogenic effect was associated with exercise. These results suggest that high-impact, strength building exercise is beneficial for premenarcheal strength, lean mass gains, and bone mineral acquisition.

Impact and interest:

324 citations in Scopus
Search Google Scholar™
270 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 83872
Item Type: Journal Article
Refereed: Yes
DOI: 10.1359/jbmr.1997.12.9.1453
ISSN: 0884-0431
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600) > Exercise Physiology (110602)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Exercise & Nutrition Sciences
Copyright Owner: Copyright 1997 Americal Society of Bone and Mineral Research
Deposited On: 14 Dec 2015 02:05
Last Modified: 14 Dec 2015 02:05

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page