Antioxidants in Athlete's Basic Nutrition: Considerations towards a Guideline for the Intake of Vitamin C and Vitamin E

Neubauer, Oliver & Yfanti, Christina (2015) Antioxidants in Athlete's Basic Nutrition: Considerations towards a Guideline for the Intake of Vitamin C and Vitamin E. In Lamprecht, Manfred (Ed.) Antioxidants in Sport Nutrition. CRC Press (Taylor & Francis Group), Boca Raton (FL), pp. 39-66.

View at publisher (open access)


Antioxidants in acute physical exercise and exercise training remain a hot topic in sport nutrition, exercise physiology and biology, in general (Jackson, 2008; Margaritis and Rousseau, 2008; Gomez-Cabrera et al., 2012; Nikolaidis et al., 2012). During the past few decades, antioxidants have received attention predominantly as a nutritional strategy for preventing or minimising detrimental effects of reactive oxygen and nitrogen species (RONS), which are generated during and after strenuous exercise (Jackson, 2008, 2009; Powers and Jackson, 2008). Antioxidant supplementation has become a common practice among athletes as a means to (theoretically) reduce oxidative stress, promote recovery and enhance performance (Peternelj and Coombes, 2011). However, until now, requirements of antioxidant micronutrients and antioxidant compounds for athletes training for and competing in different sport events, including marathon running, triathlon races or team sport events involving repeated sprinting, have not been determined sufficiently (Williams et al., 2006; Margaritis and Rousseau, 2008). Crucially, evidence has been emerging that higher dosages of antioxidants may not necessarily be beneficial in this context, but can also elicit detrimental effects by interfering with performance-enhancing (Gomez-Cabrera et al., 2008) and health-promoting training adaptations (Ristow et al., 2009). As originally postulated in a pioneering study on exercise-induced production of RONS by Davies et al. (1982) in the early 1980s, evidence has been increasing in recent years that RONS are not only damaging agents, but also act as signalling molecules for regulating muscle function (Reid, 2001; Jackson, 2008) and for initiating adaptive responses to exercise (Jackson, 2009; Powers et al., 2010). The recognition that antioxidants could, vice versa, interact with the signalling pathways underlying the responses to acute (and repeated) bouts of exercise has contributed important novel aspects to the continued discussion on antioxidant requirements for athletes. In view of the recent advances in this field, it is the aim of this report to examine the current knowledge of antioxidants, in particular of vitamins C and E, in the basic nutrition of athletes. While overviews on related topics including basic mechanisms of exercise-induced oxidative stress, redox biology, antioxidant defence systems and a summary of studies on antioxidant supplementation during exercise training are provided, this does not mean that this report is comprehensive. Several issues of the expanding and multidisciplinary field of antioxidants and exercise are covered elsewhere in this book and/or in the literature. Exemplarily, the reader is referred to reviews on oxidative stress (Konig et al., 2001; Vollaard et al., 2005; Knez et al., 2006; Powers and Jackson, 2008; Nikolaidis et al., 2012), redox-sensitive signalling and muscle function (Reid, 2001; Vollaard et al., 2005; Jackson, 2008; Ji, 2008; Powers and Jackson, 2008; Powers et al., 2010; Radak et al., 2013) and antioxidant supplementation (Williams et al., 2006; Peake et al., 2007; Peternelj and Coombes, 2011) in the context with exercise. Within the scope of the report, we rather aim to address the question regarding requirements of antioxidants, specifically vitamins C and E, during exercise training, draw conclusions and provide practical implications from the recent research.

Impact and interest:

3 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

4 since deposited on 23 Jul 2015
4 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 84823
Item Type: Book Chapter
Additional URLs:
Keywords: Antioxidants, Exercise training, Athletes, Vitamin C, Vitamin E
ISBN: 9781466567573
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600) > Exercise Physiology (110602)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > NUTRITION AND DIETETICS (111100) > Clinical and Sports Nutrition (111101)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > NUTRITION AND DIETETICS (111100) > Nutritional Physiology (111103)
Divisions: Current > Schools > School of Biomedical Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2015 by Taylor & Francis Group, LLC
Deposited On: 23 Jul 2015 22:41
Last Modified: 29 Mar 2017 06:09

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page