Structural optimization approach for specially shaped composite tank in spacecrafts

Mingfa, Ren, Fanzi, Bu, & Li, Tong (2015) Structural optimization approach for specially shaped composite tank in spacecrafts. Journal of Mechanical Science and Technology, 29(4), pp. 1429-1435.

View at publisher


This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

6 since deposited on 02 Jul 2015
5 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 85106
Item Type: Journal Article
Refereed: Yes
Keywords: Specially shaped composite tank, Finite element analysis, Optimal design, Quasi-network design method, Adaptive simulated annealing algorithm
DOI: 10.1007/s12206-015-0314-8
ISSN: 1976-3824
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200) > Composite and Hybrid Materials (091202)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2015 KSME & Springer
Copyright Statement: The final publication is available at Springer via
Deposited On: 02 Jul 2015 22:31
Last Modified: 19 Apr 2016 20:05

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page