Effect of covalent functionalisation on thermal transport across graphene-polymer interfaces

Wang, Y., Zhan, H.F., Xiang, Y., Yang, C., Wang, C.M., & Zhang, Y.Y. (2015) Effect of covalent functionalisation on thermal transport across graphene-polymer interfaces. The Journal of Physical Chemistry Part C, 119(22), pp. 12731-12738.


View at publisher


This paper is concerned with the interfacial thermal resistance for polymer composites reinforced by various covalently functionalised graphene. By using molecular dynamics simulations, the obtained results show that the covalent functionalisation in graphene plays a significant role in reducing the graphene-paraffin interfacial thermal resistance. This reduction is dependent on the coverage and type of functional groups. Among the various functional groups, butyl is found to be the most effective in reducing the interfacial thermal resistance, followed by methyl, phenyl and formyl. The other functional groups under consideration such as carboxyl, hydroxyl and amines are found to produce negligible reduction in the interfacial thermal resistance. For multilayer graphene with a layer number up to four, the interfacial thermal resistance is insensitive to the layer number. The effects of the different functional groups and the layer number on the interfacial thermal resistance are also elaborated using the vibrational density of states of the graphene and the paraffin matrix. The present findings provide useful guidelines in the application of functionalised graphene for practical thermal management.

Impact and interest:

8 citations in Scopus
Search Google Scholar™
6 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

4 since deposited on 14 Jul 2015
3 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 85440
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: molecular dynamics, paraffin, functional group, interfacial thermal resistance
DOI: 10.1021/acs.jpcc.5b02920
ISSN: 1932-7455
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanomaterials (100708)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright © 2015 American Chemical Society
Deposited On: 14 Jul 2015 22:58
Last Modified: 12 May 2016 02:05

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page