Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults

Braskie, M. N., Jahanshad, N., Stein, J. L., Barysheva, M., Johnson, K., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Wright, M. J., Ringman, J. M., Toga, A. W., & Thompson, P. M. (2012) Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults. The Journal of Neuroscience, 32(17), pp. 5964-5972.

View at publisher

Abstract

The NTRK1 gene (also known as TRKA) encodes a high-affinity receptor for NGF, a neurotrophin involved in nervous system development and myelination. NTRK1 has been implicated in neurological function via links between the T allele at rs6336 (NTRK1-T) and schizophrenia risk. A variant in the neurotrophin gene, BDNF, was previously associated with white matter integrity in young adults, highlighting the importantce of neurotrophins to white matter development. We hypothesized that NTRK1-T would relate to lower fractional anisotropy in healthy adults. We scanned 391 healthy adult human twins and their siblings (mean age: 23.6 ± 2.2 years; 31 NTRK1-T carriers, 360 non-carriers) using 105-gradient diffusion tensor imaging at 4 tesla. We evaluated in brain white matter how NTRK1-T and NTRK1 rs4661063 allele A (rs4661063-A, which is in moderate linkage disequilibrium with rs6336) related to voxelwise fractional anisotropy-acommondiffusion tensor imaging measure of white matter microstructure. We used mixed-model regression to control for family relatedness, age, and sex. The sample was split in half to test reproducibility of results. The false discovery rate method corrected for voxelwise multiple comparisons. NTRK1-T and rs4661063-A correlated with lower white matter fractional anisotropy, independent of age and sex (multiple-comparisons corrected: false discovery rate critical p=0.038 forNTRK1-Tand0.013 for rs4661063-A). In each half-sample, theNTRK1-T effectwasreplicated in the cingulum, corpus callosum, superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculus, superior corona radiata, and uncinate fasciculus. Our results suggest that NTRK1-T is important for developing white matter microstructure.

Impact and interest:

22 citations in Scopus
Search Google Scholar™
20 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 85685
Item Type: Journal Article
Refereed: Yes
DOI: 10.1523/JNEUROSCI.5561-11.2012
ISSN: 1529-2401
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2012 The Authors
Deposited On: 18 Sep 2015 06:31
Last Modified: 21 Sep 2015 00:40

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page