A nonconservative Lagrangian framework for statistical fluid registration - SAFIRA

Brun, C. C., Lepore, N., Pennec, X., Chou, Y. Y., Lee, A. D., de Zubicaray, G., McMahon, K. L., Wright, M. J., Gee, J. C., & Thompson, P. M. (2011) A nonconservative Lagrangian framework for statistical fluid registration - SAFIRA. IEEE Transactions on Medical Imaging, 30(2), pp. 184-202.

View at publisher

Abstract

In this paper, we used a nonconservative Lagrangian mechanics approach to formulate a new statistical algorithm for fluid registration of 3-D brain images. This algorithm is named SAFIRA, acronym for statistically-assisted fluid image registration algorithm. A nonstatistical version of this algorithm was implemented, where the deformation was regularized by penalizing deviations from a zero rate of strain. In, the terms regularizing the deformation included the covariance of the deformation matrices Σ and the vector fields (q). Here, we used a Lagrangian framework to reformulate this algorithm, showing that the regularizing terms essentially allow nonconservative work to occur during the flow. Given 3-D brain images from a group of subjects, vector fields and their corresponding deformation matrices are computed in a first round of registrations using the nonstatistical implementation. Covariance matrices for both the deformation matrices and the vector fields are then obtained and incorporated (separately or jointly) in the nonconservative terms, creating four versions of SAFIRA. We evaluated and compared our algorithms' performance on 92 3-D brain scans from healthy monozygotic and dizygotic twins; 2-D validations are also shown for corpus callosum shapes delineated at midline in the same subjects. After preliminary tests to demonstrate each method, we compared their detection power using tensor-based morphometry (TBM), a technique to analyze local volumetric differences in brain structure. We compared the accuracy of each algorithm variant using various statistical metrics derived from the images and deformation fields. All these tests were also run with a traditional fluid method, which has been quite widely used in TBM studies. The versions incorporating vector-based empirical statistics on brain variation were consistently more accurate than their counterparts, when used for automated volumetric quantification in new brain images. This suggests the advantages of this approach for large-scale neuroimaging studies.

Impact and interest:

10 citations in Scopus
8 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 85693
Item Type: Journal Article
Refereed: No
Keywords: Fluid mechanics, nonconservative Lagrangian, registration, Riemannian framework, statistics, tensors, twins
DOI: 10.1109/TMI.2010.2067451
ISSN: 1558-254X
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2010 IEEE
Deposited On: 28 Sep 2015 06:33
Last Modified: 29 Sep 2015 03:24

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page