Investigating brain connectivity heritability in a twin study using diffusion imaging data

Shen, Kai-Kai, Rose, Stephen, Fripp, Jurgen, McMahon, Katie L., de Zubicaray, Greig I., Martin, Nicholas G., Thompson, Paul M., Wright, Margaret J., & Salvado, Olivier (2014) Investigating brain connectivity heritability in a twin study using diffusion imaging data. NeuroImage, 100, pp. 628-641.

View at publisher

Abstract

Heritability of brain anatomical connectivity has been studied with diffusion-weighted imaging (DWI) mainly by modeling each voxel's diffusion pattern as a tensor (e.g., to compute fractional anisotropy), but this method cannot accurately represent the many crossing connections present in the brain. We hypothesized that different brain networks (i.e., their component fibers) might have different heritability and we investigated brain connectivity using High Angular Resolution Diffusion Imaging (HARDI) in a cohort of twins comprising 328 subjects that included 70 pairs of monozygotic and 91 pairs of dizygotic twins. Water diffusion was modeled in each voxel with a Fiber Orientation Distribution (FOD) function to study heritability for multiple fiber orientations in each voxel. Precision was estimated in a test-retest experiment on a sub-cohort of 39 subjects. This was taken into account when computing heritability of FOD peaks using an ACE model on the monozygotic and dizygotic twins. Our results confirmed the overall heritability of the major white matter tracts but also identified differences in heritability between connectivity networks. Inter-hemispheric connections tended to be more heritable than intra-hemispheric and cortico-spinal connections. The highly heritable tracts were found to connect particular cortical regions, such as medial frontal cortices, postcentral, paracentral gyri, and the right hippocampus.

Impact and interest:

8 citations in Scopus
Search Google Scholar™
8 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 85834
Item Type: Journal Article
Refereed: Yes
DOI: 10.1016/j.neuroimage.2014.06.041
ISSN: 1095-9572
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2014 Elsevier
Deposited On: 28 Sep 2015 03:20
Last Modified: 07 Oct 2015 03:25

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page