Sodium and lithium storage properties of spray-dried molybdenum disulfide-graphene hierarchical microspheres

Kalluri, Sujith, Seng, Kuok Hau, Guo, Zaiping, Du, Aijun, Konstantinov, Konstantin, Liu, Hua Kun, & Dou, Shi Xue (2015) Sodium and lithium storage properties of spray-dried molybdenum disulfide-graphene hierarchical microspheres. Scientific Reports, 5, Article number: 11989.

View at publisher (open access)

Abstract

Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1.

Impact and interest:

13 citations in Scopus
11 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 85938
Item Type: Journal Article
Refereed: Yes
DOI: 10.1038/srep11989
ISSN: 2045-2322
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2015 Macmillan Publishers Limited
Copyright Statement: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Deposited On: 22 Jul 2015 23:28
Last Modified: 24 Jul 2015 01:12

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page