The evolutionary history of termites as inferred from 66 mitochondrial genomes

Bourguignon, Thomas, Lo, Nathan, Cameron, Stephen L., Šobotník, Jan, Hayash, Yoshinobu, Shigenobu, Shuji, Watanabe, Dai, Roisin, Yves, Miura, Toru, & Evans, Theodore A. (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution, 32(2), pp. 406-421.

View at publisher


Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events.

Impact and interest:

30 citations in Scopus
Search Google Scholar™
31 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 86197
Item Type: Journal Article
Refereed: Yes
Keywords: Isoptera, Biogeography, Molecular clock, Molecular phylogeny
DOI: 10.1093/molbev/msu308
ISSN: 0737-4038
Divisions: Current > Schools > School of Earth, Environmental & Biological Sciences
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 The Author
Copyright Statement: Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. For permissions, please
Deposited On: 04 Aug 2015 22:19
Last Modified: 05 Aug 2015 22:29

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page