Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow

Costa, Pedro, Vaquette, Cedryck, Baldwin, Jeremy, Chhaya, Mohit Prashant, Gomes, Manuela, Reis, Rui, Theodoropoulos, Christina, & Hutmacher, Dietmar (2014) Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication, 6(3), pp. 1-11.

View at publisher

Abstract

This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

Impact and interest:

10 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 88582
Item Type: Journal Article
Refereed: Yes
Keywords: additive manufacturing, bioreactor, tissue engineering, biofabrication, custom-made scaffolds
DOI: 10.1088/1758-5082/6/3/035006
ISSN: 1758-5082
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2014 IOP Publishing Ltd.
Deposited On: 08 Nov 2015 23:10
Last Modified: 08 Nov 2015 23:10

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page