A method for matching patients to advanced prostate cancer clinical trials

Wagholikar, Amol, Nguyen, Anthony, & Fung, Maggie (2014) A method for matching patients to advanced prostate cancer clinical trials. Electronic Journal of Health Informatics, 8(1), e6.

View at publisher (open access)

Abstract

Objective: To illustrate a new method for simplifying patient recruitment for advanced prostate cancer clinical trials using natural language processing techniques.

Background: The identification of eligible participants for clinical trials is a critical factor to increase patient recruitment rates and an important issue for discovery of new treatment interventions. The current practice of identifying eligible participants is highly constrained due to manual processing of disparate sources of unstructured patient data. Informatics-based approaches can simplify the complex task of evaluating patient’s eligibility for clinical trials. We show that an ontology-based approach can address the challenge of matching patients to suitable clinical trials.

Methods: The free-text descriptions of clinical trial criteria as well as patient data were analysed. A set of common inclusion and exclusion criteria was identified through consultations with expert clinical trial coordinators. A research prototype was developed using Unstructured Information Management Architecture (UIMA) that identified SNOMED CT concepts in the patient data and clinical trial description. The SNOMED CT concepts model the standard clinical terminology that can be used to represent and evaluate patient’s inclusion/exclusion criteria for the clinical trial.

Results: Our experimental research prototype describes a semi-automated method for filtering patient records using common clinical trial criteria. Our method simplified the patient recruitment process. The discussion with clinical trial coordinators showed that the efficiency in patient recruitment process measured in terms of information processing time could be improved by 25%.

Conclusion: An UIMA-based approach can resolve complexities in patient recruitment for advanced prostate cancer clinical trials.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 88589
Item Type: Journal Article
Refereed: Yes
Keywords: Clinical Trials; MetaMap; Natural Language Processing; UIMA
ISSN: 1446-4381
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2014 The Authors
Copyright Statement: Creative Commons Attribution 3.0 License
Deposited On: 08 Nov 2015 22:43
Last Modified: 08 Nov 2015 22:43

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page