Practical determination of cane wagon derailment forces for the Australian sugar industry

Santarossa, Lino G. & Kent, Geoff A. (2014) Practical determination of cane wagon derailment forces for the Australian sugar industry. In Bruce, R. (Ed.) Proceedings of the 36th Conference of the Australian Society of Sugar Cane Technologists, Australian Society of Sugar Cane Technologists, Gold Coast, QLD, pp. 411-421.

View at publisher


Derailments are a significant cost to the Australian sugar industry with damage to rail infrastructure and rolling stock in excess of $2 M per annum. Many factors can contribute to cane rail derailments. The more prevalent factors are discussed. Derailment statistics on likely causes for cane rail derailments are presented with the case of empty wagons on the main line being the highest contributor to business cost. Historically, the lateral to vertical wheel load ratio, termed the derailment ratio, has been used to indicate the derailment probability of rolling stock. When the derailment ratio reaches the Nadal limit of 0.81 for cane rail operations, there is a high probability that a derailment will occur. Contributing factors for derailments include the operating forces, the geometric variables of the rolling stock and the geometric deviations of the railway track. These combined, have the capacity to affect the risk of derailment for a cane rail transport operating system. The derailment type that is responsible for creating the most damage to assets and creating mill stops is the flange climb derailment, as these derailments usually occur at speed with a full rake of empty wagons. The typical forces that contribute to the flange climb derailment case for cane rail operations are analysed and a practical derailment model is developed to enable operators to better appreciate the most significant contributing factors to this type of derailment. The paper aims to: (a) improve awareness of the significance of physical operating parameters so that these principles can be included in locomotive driver training and (b) improve awareness of track and wagon variables related to the risk of derailment so that maintainers of the rail system can allocate funds for maintenance more effectively.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 88801
Item Type: Conference Paper
Refereed: Yes
ISSN: 0726-0822
Deposited On: 20 Oct 2015 01:45
Last Modified: 20 Oct 2015 01:45

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page