Remote Sensing and Data Collection from Solar Powered Wireless Sensor Network using an Unmanned Aerial Vehicle System

Mehmedagic, Armin (2010) Remote Sensing and Data Collection from Solar Powered Wireless Sensor Network using an Unmanned Aerial Vehicle System. ARCAA Remote Sensing Techical Reports, ARCAA-RS-2010-01. Queensland University of Technology, Brisbane, Qld.


Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

30 since deposited on 26 Oct 2015
9 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 89462
Item Type: Report
Refereed: No
Keywords: UAV, WSN, Solar Powered, drones, atmospheric sampling
Divisions: Current > Research Centres > Australian Research Centre for Aerospace Automation
Current > Schools > School of Electrical Engineering & Computer Science
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2010 Queensland University of Technology
Deposited On: 26 Oct 2015 05:23
Last Modified: 30 Oct 2015 00:17

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page