QUT ePrints

Aero-structural optimisation of unmanned aerial vehicles using a multi-objective evolutionary algorithm

Gonzalez, Luis F., Damp, Lloyd, & Srinivas, K. (2006) Aero-structural optimisation of unmanned aerial vehicles using a multi-objective evolutionary algorithm. In 2nd Australasian Unmanned Air Vehicles Conference, 19 -22 March 2006, Melbourne.

This is the latest version of this eprint.

Abstract

This paper describes the practical application of Hierarchical Asynchronous Parallel Evolutionary Algorithms for Multi-objective and Multidisciplinary Design Optimisation (MDO) of UAV Systems using high fidelity analysis tools. The project looked at the aerodynamics and structure of two production UAV wings and attempted to optimise these wings in isolation to the rest of the vehicle. The two vehicles wings which were optimised were a High Altitude Long Endurance (HALE) UAV similar to the Global Hawk and a Medium Altitude Long Endurance (MALE) UAV similar to the Altair. The optimisations for both vehicles were performed at cruise altitude with MTOW minus 5% fuel and a 2.5g load case. The work was carried out by integrating the current University of Sydney designed Evolutionary Optimiser (HAPMOEA) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) tools. The variable values computed by APMOEA were subjected to structural and aerodynamic analysis. The aerodynamic analysis computed the pressure loads using a Morino class panel method code named PANAIR. These aerodynamic results were coupled to a FEA code, MSC.Nastran® and the strain and displacement of the wings computed. The fitness were the overall mass of the simulated wing box structure and the inverse of the lift to drag ratio. Furthermore, six penalty functions were added to further penalise genetically inferior wings and force the optimiser to not pass on their genetic material. The results indicate that given the initial assumptions made on all the aerodynamic and structural properties of the HALE and MALE wings, a reduction in mass and drag is possible through the use of the HAPMOEA code. Even though a reduced number of evaluations were performed, weight and drag reductions of between 10 and 20 percent were easy to achieve and indicate that the wings of both vehicles can be optimised.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,247 since deposited on 14 Aug 2007
126 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 8973
Item Type: Conference Paper
Keywords: Multidisciplinary Design Optimisation, UAS
ISBN: 9780980321500
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > NUMERICAL AND COMPUTATIONAL MATHEMATICS (010300) > Optimisation (010303)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100) > Aerospace Structures (090103)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100) > Flight Dynamics (090106)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100) > Aerodynamics (excl. Hypersonic Aerodynamics) (090101)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2006 (please consult author)
Deposited On: 14 Aug 2007
Last Modified: 13 Oct 2011 23:52

Available Versions of this Item

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page