Control of Ship Roll Motion

Perez, Tristan & Blanke, Mogens (2015) Control of Ship Roll Motion. In Encyclopedia of Systems and Control. Springer, London, pp. 196-202.

View at publisher

Abstract

The undesirable effects of roll motion of ships (rocking about the longitudinal axis) became noticeable in the mid-nineteenth century when significant changes were introduced to the design of ships as a result of sails being replaced by steam engines and the arrangement being changed from broad to narrow hulls. The combination of these changes led to lower transverse stability (lower restoring moment for a given angle of roll) with the consequence of larger roll motion. The increase in roll motion and its effect on cargo and human performance lead to the development several control devices that aimed at reducing and controlling roll motion. The control devices most commonly used today are fin stabilizers, rudder, anti-roll tanks, and gyrostabilizers. The use of different types of actuators for control of ship roll motion has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of difficulties associated with control system design, which have proven to be far from trivial due to fundamental performance limitations and large variations of the spectral characteristics of wave-induced roll motion. This short article provides an overview of the fundamentals of control design for ship roll motion reduction. The overview is limited to the most common control devices.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

108 since deposited on 10 Nov 2015
107 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 90126
Item Type: Book Chapter
DOI: 10.1007/978-1-4471-5058-9_123
ISBN: 978-1-4471-5058-9
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2015 Springer-Verlag London
Deposited On: 10 Nov 2015 06:22
Last Modified: 19 Nov 2015 00:49

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page