Cardiovascular diseases and vulnerable plaques: data, modeling, predictions and clinical applications PREFACE

Tang, D. L., Li, Z.Y., Gijsen, F., & Giddens, D.P. (2015) Cardiovascular diseases and vulnerable plaques: data, modeling, predictions and clinical applications PREFACE. BioMedical Engineering OnLine, 14(Supp), S1-S7.

View at publisher (open access)



Two symposia on “cardiovascular diseases and vulnerable plaques”

Cardiovascular disease (CVD) is the leading cause of death worldwide. Huge effort has been made in many disciplines including medical imaging, computational modeling, bio- mechanics, bioengineering, medical devices, animal and clinical studies, population studies as well as genomic, molecular, cellular and organ-level studies seeking improved methods for early detection, diagnosis, prevention and treatment of these diseases [1-14]. However, the mechanisms governing the initiation, progression and the occurrence of final acute clinical CVD events are still poorly understood. A large number of victims of these dis- eases who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs [8,9]. Most cardiovascular diseases are associated with vulnerable plaques. A grand challenge here is to develop new imaging techniques, predictive methods and patient screening tools to identify vulnerable plaques and patients who are more vulnerable to plaque rupture and associated clinical events such as stroke and heart attack, and recommend proper treatment plans to prevent those clinical events from happening.

Articles in this special issue came from two symposia held recently focusing on “Cardio-vascular Diseases and Vulnerable Plaques: Data, Modeling, Predictions and Clinical Applications.” One was held at Worcester Polytechnic Institute (WPI), Worcester, MA, USA, July 13-14, 2014, right after the 7th World Congress of Biomechanics. This symposium was endorsed by the World Council of Biomechanics, and partially supported by a grant from NIH-National Institute of Biomedical Image and Bioengineering. The other was held at Southeast University (SEU), Nanjing, China, April 18-20, 2014.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

15 since deposited on 16 Nov 2015
15 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 90275
Item Type: Journal Article
Refereed: Yes
Keywords: atherosclerotic plaque, shear-stress, in-vivo, progression, mechanics, rupture, artery, mri
DOI: 10.1186/1475-925x-14-s1-s1
ISSN: 1475-925X
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: © 2015 Tang et al.; licensee BioMed Central Ltd.
Copyright Statement: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// applies to the data made available in this article, unless otherwise stated
Deposited On: 16 Nov 2015 02:34
Last Modified: 10 Dec 2015 11:08

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page