The mechanical triggers of plaque rupture: Shear stress vs pressure gradient

Li, Z. Y., Taviani, V., Tang, T., Sadat, U., Young, V., Patterson, A., Graves, M., & Gillard, J. H. (2009) The mechanical triggers of plaque rupture: Shear stress vs pressure gradient. British Journal of Radiology, 82(SPEC.), S39-S45.

View at publisher


The aim of this study was to evaluate the mechanical triggers that may cause plaque rupture. Wall shear stress (WSS) and pressure gradient are the direct mechanical forces acting on the plaque in a stenotic artery. Their influence on plaque stability is thought to be controversial. This study used a physiologically realistic, pulsatile flow, two-dimensional, cine phase-contrast MRI sequence in a patient with a 70% carotid stenosis. Instead of considering the full patient-specific carotid bifurcation derived from MRI, only the plaque region has been modelled by means of the idealised flow model. WSS reached a local maximum just distal to the stenosis followed by a negative local minimum. A pressure drop across the stenosis was found which varied significantly during systole and diastole. The ratio of the relative importance of WSS and pressure was assessed and was found to be less than 0.07% for all time phases, even at the throat of the stenosis. In conclusion, although the local high WSS at the stenosis may damage the endothelium and fissure plaque, the magnitude of WSS is small compared with the overall loading on plaque. Therefore, pressure may be the main mechanical trigger for plaque rupture and risk stratification using stress analysis of plaque stability may only need to consider the pressure effect.

Impact and interest:

19 citations in Scopus
Search Google Scholar™
19 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 90334
Item Type: Journal Article
Refereed: Yes
DOI: 10.1259/bjr/15036781
ISSN: 1748-880X
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2009 The British Institute of Radiology
Deposited On: 16 Nov 2015 03:56
Last Modified: 02 Dec 2015 05:53

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page