An extended regression approach to estimating loads and their uncertainties in Great Barrier Reef catchments

Wang, Y-G., Kuhnert, P., Henderson, B., & Stewart, L. (2009) An extended regression approach to estimating loads and their uncertainties in Great Barrier Reef catchments. In 18th World IMACS / MODSIM Congress, 13-17 July 2009, Cairns, Qld.

View at publisher (open access)


There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates by minimizing the biases and making use of possible predictive variables. The load estimation procedure can be summarized by the following four steps:

  • (i) output the flow rates at regular time intervals (e.g. 10 minutes) using a time series model that captures all the peak flows;

  • (ii) output the predicted flow rates as in (i) at the concentration sampling times, if the corresponding flow rates are not collected;

  • (iii) establish a predictive model for the concentration data, which incorporates all possible predictor variables and output the predicted concentrations at the regular time intervals as in (i), and;

  • (iv) obtain the sum of all the products of the predicted flow and the predicted concentration over the regular time intervals to represent an estimate of the load.

The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized regression (rating-curve) approach with additional predictors that capture unique features in the flow data, namely the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. The model also has the capacity to accommodate autocorrelation in model errors which are the result of intensive sampling during floods. Incorporating this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach using the concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the Burdekin River, a catchment delivering to the Great Barrier Reef. The sampling biases for NOx concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and extrapolation methods produce much higher estimates than those when bias in sampling is taken into account.

Impact and interest:

0 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

14 since deposited on 17 Nov 2015
14 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 90452
Item Type: Conference Paper
Refereed: Yes
Keywords: Biased sampling, bootstrap, Load estimation, Suspended sediment, Uncertainty, water quality, suspended sediment loads, tributary mass loads, river catchment, coral, record
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2009 [Please consult the author]
Deposited On: 17 Nov 2015 02:06
Last Modified: 04 Dec 2015 05:06

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page