Air pollution and fasting blood glucose: A longitudinal study in China

Chen, Linping, Zhou, Yong, Li, Shanshan, Williams, Gail, Haidong, Kan, Marks, Guy B., Morawska, Lidia, Abramson, Michael J., Chen, Shuohua, Yao, Taicheng, Qin, Tianbang, Wu, Shouling, & Guo, Yuming (2016) Air pollution and fasting blood glucose: A longitudinal study in China. Science of the Total Environment, 541, pp. 750-755.

[img] Accepted Version (PDF 234kB)
Administrators only until January 2018 | Request a copy from author

View at publisher

Abstract

Limited studies have examined the associations between air pollutants [particles with diameters of 10um or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2)] and fasting blood glucose (FBG). We collected data for 27,685 participants who were followed during 2006 and 2008. Generalized Estimating Equation models were used to examine the effects of air pollutants on FBG while controlling for potential confounders. We found that increased exposure to NO2, SO2 and PM10 was significantly associated with increased FBG levels in single pollutant models (p<0.001). For exposure to 4 days’ average of concentrations, a 100 µg/m3 increase in SO2, NO2, and PM10 was associated with 0.17 mmol/L (95%CI: 0.15–0.19), 0.53 mmol/L (95%CI: 0.42–0.65), and 0.11 mmol/L (95%CI: 0.07–0.15) increase in FBG, respectively. In the multi-pollutant models, the effects of SO2 were enhanced, while the effects of NO2 and PM10 were alleviated. The effects of air pollutants on FBG were stronger in female, elderly, and overweight people than in male, young and underweight people. In conclusion, the findings suggest that air pollution increases the levels of FBG. Vulnerable people should pay more attention on highly polluted days to prevent air pollution-related health issues.

Impact and interest:

1 citations in Scopus
1 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 91274
Item Type: Journal Article
Refereed: Yes
Keywords: Air pollution, diabetes, fasting blood glucose, particles, sulfur dioxide, nitrogen dioxide, cohort study
DOI: 10.1016/j.scitotenv.2015.09.132
ISSN: 0048-9697
Subjects: Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > ATMOSPHERIC SCIENCES (040100) > Atmospheric Aerosols (040101)
Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > ENVIRONMENTAL SCIENCE AND MANAGEMENT (050200) > Environmental Monitoring (050206)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ENVIRONMENTAL ENGINEERING (090700) > Environmental Engineering not elsewhere classified (090799)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2016 Elsevier
Copyright Statement: Licensed under the Creative Commons Attribution; Non-Commercial; No-Derivatives 4.0 International. DOI: 10.1016/j.scitotenv.2015.09.132
Deposited On: 16 Dec 2015 04:01
Last Modified: 26 Jun 2017 15:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page