Sterically Crowded Diphosphinomethane Ligands: Molecular Structures, UV-Photoelectron Spectroscopy and a Convenient General Synthesis of tBu2PCH2PtBu2 and Related Species

Eisentrager, Frank, Gothlich, Alexander, Gruber, Irene, Heiss, Helmut, Kiener, Christoph A., Kruger, Carl, Notheis, J. Ulrich, Rominger, Frank, Scherhag, Gunter, Schultz, Madeleine, Straub, Bernd F., Volland, Martin A. O., & Hofmann, Peter (2003) Sterically Crowded Diphosphinomethane Ligands: Molecular Structures, UV-Photoelectron Spectroscopy and a Convenient General Synthesis of tBu2PCH2PtBu2 and Related Species. New Journal of Chemistry, 27(3), pp. 540-550.

View at publisher


A series of highly crowded symmetric and unsymmetrical diphosphinomethanes R2PCH2PR'2, important ligands in transition metal chemistry and catalysis, namely tBu2PCH2PtBu2 (dtbpm, 11), Cy2PCH2PCy2 (dcpm, 2), tBu2PCH2PCy2 (ctbpm, 3), tBu2PCH2PiPr2 (iptbpm, 4) and tBu2PCH2PPh2 (ptbpm, 5), has been prepared in high yields, using a general and convenient route, which is described in detail for 1. Other than 4, which is a colourless liquid, these compounds are crystalline solids at room temperature. Their molecular structures have been determined by single crystal X-ray diffraction, along with that of the higher homologue of 1, tBu2CH2CH2tBu2 (dtbpe, 6). The solid-state structures of the dioxide of 1, tBu2P(O)CH2P(O)tBu2 (7), and of two phosphonium cations derived from 1, protonated [tBu2P(H)CH2PtBu2]+ (8+) and the chlorophosphonium ion [tBu2P(Cl)CH2PtBu2]+ (9+) are also described and show a distinct structural influence of the tetracoordinate P centres. The gas phase UV-photoelectron spectra of the diphosphines 1 – 6 have been measured. Their first two ionisation potentials are found to be nearly degenerate and all in the low energy range from 7.5 to 7.8 eV. Comparison with related mono- and bidentate phosphines demonstrates that 1 – 6 are excellent -donors towards metals, in accord with their known coordination chemistry. Molecular geometries and electronic structures of the diphosphine systems have been studied by quantum chemical calculations and are compared to experiment. Unlike standard semiempirical methods (AM1, PM3, MNDO) which give rather poor minimum structures and seem inadequate for such sterically crowded systems, ab initio calculations (RHF/6-31G**) predict molecular geometries with reasonable accuracy and reflect the observed trends in experimental ionisation potentials.

Impact and interest:

36 citations in Scopus
39 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

857 since deposited on 27 Aug 2007
15 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 9159
Item Type: Journal Article
Refereed: Yes
Keywords: phosphine ligands
DOI: 10.1039/b210114a
ISSN: 1144-0546
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > INORGANIC CHEMISTRY (030200) > Main Group Metal Chemistry (030204)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2003 Royal Society of Chemistry
Copyright Statement: Reproduced by permission of The Royal Society of Chemistry, no further distribution permitted.
Deposited On: 27 Aug 2007 00:00
Last Modified: 29 Feb 2012 13:41

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page