Complex permittivity measurements of RF plasma polymerized polyterpenol organic thin films employing split post dielectric resonator

Bazaka, Kateryna & Jacob, Mohan V. (2011) Complex permittivity measurements of RF plasma polymerized polyterpenol organic thin films employing split post dielectric resonator. Journal of Polymer Engineering, 31(2-3), pp. 73-75.

View at publisher


In the fields of organic electronics and biotechnology, applications for organic polymer thin films fabricated using low-temperature non-equilibrium plasma techniques are gaining significant attention because of the physical and chemical stability of thin films and the low cost of production. Polymer thin films were fabricated from non-synthetic terpinen-4-ol using radiofrequency polymerization (13.56 MHz) on low loss dielectric substrates and their permittivity properties were ascertained to determine potential applications for these organic films. Real and imaginary parts of permittivity as a function of frequency were measured using the variable angle spectroscopic ellipsometer. The real part of permittivity (k) was found to be between 2.34 and 2.65 in the wavelength region of 400–1100 nm, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies. Dielectric properties of polyterpenol films were measured by means of split post dielectric resonators (SPDRs) operating at frequencies of 10 GHz and 20 GHz. Permittivity increased for samples deposited at higher RF energy – from 2.65 (25 W) to 2.83 (75 W) measured by a 20-GHz SPDR and from 2.32 (25 W) to 2.53 (100 W) obtained using a 10-GHz SPDR. The error in permittivity measurement was predominantly attributed to the uncertainty in film thickness measurement.

Impact and interest:

1 citations in Scopus
1 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 92076
Item Type: Journal Article
Refereed: Yes
Keywords: permittivity, polymer thin films, polyterpenol films, split post dielectric resonators
DOI: 10.1515/POLYENG.2011.022
ISSN: 0334-6447
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2011 Walter de Gruyter GmbH
Deposited On: 20 Jan 2016 03:06
Last Modified: 22 Jan 2016 03:13

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page