A quantitative study of diffusion in quasi-periodic fibre networks and complex porous media

Powell, Sean K. (2016) A quantitative study of diffusion in quasi-periodic fibre networks and complex porous media. PhD by Publication, Queensland University of Technology.

Abstract

Diffusion is the fundamental process behind many molecular phenomena such as the mixing of substances. Its physical basis is the random motion of particles in a fluid. In complex porous media, diffusion is restricted by interactions with internal structures. In this work, we present studies of restricted diffusion that aim to efficiently produce quantitative models for obtaining detailed information about the morphology of biological porous media from diffusion tensor imaging experiments. We achieved this by developing a Langevin dynamics algorithm to provide physically realistic modelling of water/barrier interactions and the Lattice-Path Count algorithm to enumerate all available particle trajectories to evaluate molecular transport properties. We also performed diffusion tensor imaging experiments of the fibre networks of tissue engineering scaffolds. The findings of this thesis provide further insight into the physics underlying restricted diffusion.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

6 since deposited on 19 May 2016
6 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 92506
Item Type: QUT Thesis (PhD by Publication)
Supervisor: Momot, Konstantin & Langton, Christian
Keywords: restricted diffusion, molecular dynamics, computer simulation, Monte-Carlo, Langevin dynamics, random walks, articular cartilage, diffusion tensor imaging, tissue engineering scaffold, interpretive model
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Institution: Queensland University of Technology
Deposited On: 19 May 2016 04:47
Last Modified: 28 Jun 2016 22:36

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page