Multiple instance dictionary learning for activity representation

Umakanthan, Sabanadesan, Denman, Simon, Fookes, Clinton, & Sridharan, Sridha (2014) Multiple instance dictionary learning for activity representation. In 22nd International Conference on Pattern Recognition (ICPR 2014), IEEE, Stockholm, Sweden, pp. 1377-1382.

View at publisher

Abstract

This paper presents an effective feature representation method in the context of activity recognition. Efficient and effective feature representation plays a crucial role not only in activity recognition, but also in a wide range of applications such as motion analysis, tracking, 3D scene understanding etc. In the context of activity recognition, local features are increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational requirements, their performance is still limited for real world applications due to a lack of contextual information and models not being tailored to specific activities. We propose a new activity representation framework to address the shortcomings of the popular, but simple bag-of-words approach. In our framework, first multiple instance SVM (mi-SVM) is used to identify positive features for each action category and the k-means algorithm is used to generate a codebook. Then locality-constrained linear coding is used to encode the features into the generated codebook, followed by spatio-temporal pyramid pooling to convey the spatio-temporal statistics. Finally, an SVM is used to classify the videos. Experiments carried out on two popular datasets with varying complexity demonstrate significant performance improvement over the base-line bag-of-feature method.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

17 since deposited on 17 Feb 2016
17 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 92904
Item Type: Conference Paper
Refereed: Yes
DOI: 10.1109/ICPR.2014.246
ISBN: 9781479952090
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Computer Vision (080104)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Pattern Recognition and Data Mining (080109)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Signal Processing (090609)
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 IEEE
Deposited On: 17 Feb 2016 00:54
Last Modified: 22 Feb 2016 17:45

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page