Osteoimmunomodulation for the development of advanced bone biomaterials

Chen, Zetao, Klein, Travis, Murray, Rachael Z., Crawford, Ross, Chang, Jiang, Wu, Chentie, & Xiao, Yin (2016) Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 19(6), pp. 304-321.

View at publisher (open access)


As direct effector cells for osteogenesis, osteoblastic cells are commonly used for evaluating the in vitro osteogenic capacity of bone biomaterials, and the traditional biological principle for developing bone biomaterials is to directly stimulate osteogenic differentiation. With this principle, most efforts are currently spent on optimizing the bio-mechanical and physicochemical properties to induce osteogenic differentiation of mesenchymal stem cells. This strategy has achieved certain success in the development of bone biomaterials; however, inconsistencies between in vitro and in vivo studies are not uncommon, implying the mechanisms that govern the material's capacity to mediate osteogenesis is not well-understood. Osteoimmunology has revealed the vital role of immune cells in regulating bone dynamics. Neglecting the importance of the immune response is a major shortcoming of the traditional strategy, and may explain inconsistencies between in vitro and in vivo conditions. Here, we proposed osteoimmunomodulation (OIM) in recognition of the importance of the immune response during biomaterial-mediated osteogenesis. Accordingly, we proposed the paradigm shift of bone biomaterials to an osteoimmunomodulatory material and discussed the evaluation strategy for the osteoimmunomodulation property of bone biomaterials. It is the ambition of authors that this review will change traditional methods for bone biomaterials assessment and assist in developing new bone biomaterials with the osteoimmunomodulatory property for orthopedic and dental applications.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

4 since deposited on 21 Sep 2016
4 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 93151
Item Type: Journal Article
Refereed: Yes
Keywords: bone biomaterials, osteoimmunology, immunomodulation, osteogenesis, osseointegration
DOI: 10.1016/j.mattod.2015.11.004
ISSN: 1369-7021
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomaterials (090301)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2015 The Authors
Deposited On: 21 Sep 2016 22:36
Last Modified: 22 Sep 2016 21:56

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page