Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects

McInerney-Leo, A.M., Sparrow, D.B., Harris, J.E., Gardiner, B.B., Marshall, M.S., O'Reilly, V.C., Shi, H., Brown, M.A., Leo, P.J., Zankl, A., Dunwoodie, S.L., & Duncan, E.L. (2015) Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects. Human Molecular Genetics, 24(5), pp. 1234-1242.

View at publisher (open access)

Abstract

Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 94185
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :1
Export Date: 14 March 2016
CODEN: HMGEE
Correspondence Address: Duncan, E.L.; Department of Endocrinology, Royal Brisbane and Women's Hospital, Butterfield Road, Australia
Chemicals/CAS: Basic Helix-Loop-Helix Transcription Factors; Codon, Nonsense; Mesp2 protein, mouse; Mutant Proteins; Repressor Proteins; Ripply2 protein, mouse; Tbx6 protein, mouse; Transcription Factors
References: Alexander, P.G., Tuan, R.S., Role of environmental factors in axial skeletal dysmorphogenesis (2010) Birth Defects Res. C. Embryo Today, 90, pp. 118-132; Pourquie, O., Vertebrate segmentation: from cyclic gene networks to scoliosis (2011) Cell, 145, pp. 650-663; Offiah, A., Alman, B., Cornier, A.S., Giampietro, P.F., Tassy, O., Wade, A., Turnpenny, P.D., Pilot assessment of a radiologic classification systemfor segmentation defects of the vertebrae (2010) Am. J. Med. Genet. A., 152 A, pp. 1357-1371; Bulman, M.P., Kusumi, K., Frayling, T.M., McKeown, C., Garrett, C., Lander, E.S., Krumlauf, R., Turnpenny, P.D., Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis (2000) Nat. Genet., 24, pp. 438-441; Turnpenny, P.D., Alman, B., Cornier, A.S., Giampietro, P.F., Offiah, A., Tassy, O., Pourquie, O., Dunwoodie, S., Abnormal vertebral segmentation and the notch signaling pathway in man (2007) Dev. Dyn., 236, pp. 1456-1474; Sparrow, D.B., Chapman, G., Wouters, M.A., Whittock, N.V., Ellard, S., Fatkin, D., Turnpenny, P.D., Dunwoodie, S.L., Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype (2006) Am. J. Hum. Genet., 78, pp. 28-37; Whittock, N.V., Sparrow, D.B., Wouters, M.A., Sillence, D., Ellard, S., Dunwoodie, S.L., Turnpenny, P.D., Mutated MESP2 causes spondylocostal dysostosis in humans (2004) Am. J. Hum. Genet., 74, pp. 1249-1254; Sparrow, D.B., Guillen-Navarro, E., Fatkin, D., Dunwoodie, S.L., Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis (2008) Hum. Mol. Genet., 17, pp. 3761-3766; White, P.H., Farkas, D.R., Chapman, D.L., Regulation of Tbx6 expression by Notch signaling (2005) Genesis, 42, pp. 61-70; Sparrow, D.B., McInerney-Leo, A., Gucev, Z.S., Gardiner, B., Marshall, M., Leo, P.J., Chapman, D.L., Brown, M.A., Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6 (2013) Hum. Mol. Genet., 22, pp. 1625-1631; Mohamed, J.Y., Faqeih, E., Alsiddiky, A., Alshammari, M.J., Ibrahim, N.A., Alkuraya, F.S., Mutations in MEOX1, encoding mesenchyme homeobox 1, cause Klippel-Feil anomaly (2013) Am. J. Hum. Genet., 92, pp. 157-161; Bayrakli, F., Guclu, B., Yakicier, C., Balaban, H., Kartal, U., Erguner, B., Sagiroglu, M.S., Kazanci, B., Mutation in MEOX1 gene causes a recessive Klippel-Feil syndrome subtype (2013) BMC Genet., 14, p. 95; Ye, M., Berry-Wynne, K.M., Asai-Coakwell, M., Sundaresan, P., Footz, T., French, C.R., Abitbol, M., Allison, W.T., Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies (2010) Hum. Mol. Genet., 19, pp. 287-298; Tassabehji, M., Fang, Z.M., Hilton, E.N., McGaughran, J., Zhao, Z., de Bock, C.E., Howard, E., Diwan, A., Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome (2008) Hum. Mutat., 29, pp. 1017-1027; Sparrow, D.B., Chapman, G., Smith, A.J., Mattar, M.Z., Major, J.A., O'Reilly, V.C., Saga, Y., Alman, B.A., A mechanism for gene-environment interaction in the etiology of congenital scoliosis (2012) Cell, 149, pp. 295-306; Project, G., Abecasis, C.G.R., Altshuler, D., Auton, A., Brooks, L.D., Durbin, R.M., Gibbs, R.A., McVean, G.A., A map of human genome variation from population-scale sequencing (2010) Nature, 467, pp. 1061-1073; Albers, C.A., Lunter, G., MacArthur, D.G., McVean, G., Ouwehand, W.H., Durbin, R., Dindel: accurate indel calls from short-read data (2011) Genome Res., 21, pp. 961-973; Cooper, G.M., Stone, E.A., Asimenos, G., Program, N.C.S., Green, E.D., Batzoglou, S., Sidow, A., Distribution and intensity of constraint in mammalian genomic sequence (2005) Genome Res., 15, pp. 901-913; Schwarz, J.M., Rodelsperger, C., Schuelke, M., Seelow, D., MutationTaster evaluates disease-causing potential of sequence alterations (2010) Nat. Methods, 7, pp. 575-576; Kumar, P., Henikoff, S., Ng, P.C., Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm (2009) Nat. Protoc., 4, pp. 1073-1081; Kawamura, A., Koshida, S., Takada, S., Activator-torepressor conversion of T-box transcription factors by the Ripply family of Groucho/TLE-associated mediators (2008) Mol. Cell. Biol., 28, pp. 3236-3244; Blanchette, M., Kent, W.J., Riemer, C., Elnitski, L., Smit, A.F., Roskin, K.M., Baertsch, R., Green, E.D., Aligning multiple genomic sequences with the threaded blockset aligner (2004) Genome Res., 14, pp. 708-715; McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P., Cunningham, F., Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor (2010) Bioinformatics, 26, pp. 2069-2070; Desmet, F.O., Hamroun, D., Lalande, M., Collod-Beroud, G., Claustres, M., Beroud, C., Human splicing finder: an online bioinformatics tool to predict splicing signals (2009) Nucleic Acids Res., 37, p. e67; Wang, J., Mullighan, C.G., Easton, J., Roberts, S., Heatley, S.L., Ma, J., Rusch, M.C., Ding, L., CREST maps somatic structural variation in cancer genomes with base-pair resolution (2011) Nat. Methods, 8, pp. 652-654; Plagnol, V., Curtis, J., Epstein, M., Mok, K.Y., Stebbings, E., Grigoriadou, S., Wood, N.W., Thrasher, A.J., A robust model for read count data in exome sequencing experiments and implications for copy number variant calling (2012) Bioinformatics, 28, pp. 2747-2754; Maquat, L.E., Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics (2004) Nat. Rev. Mol. Cell Biol., 5, pp. 89-99; Yasuhiko, Y., Haraguchi, S., Kitajima, S., Takahashi, Y., Kanno, J., Saga, Y., Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 3651-3656; Chan, T., Kondow, A., Hosoya, A., Hitachi, K., Yukita, A., Okabayashi, K., Nakamura, H., Michiue, T., Ripply2 is essential for precise somite formation during mouse early development (2007) FEBS Lett., 581, pp. 2691-2696; Morimoto, M., Sasaki, N., Oginuma, M., Kiso, M., Igarashi, K., Aizaki, K., Kanno, J., Saga, Y., The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite (2007) Development, 134, pp. 1561-1569; Sparrow, D.B., Chapman, G., Dunwoodie, S.L., The mouse notches up another success: understanding the causes of human vertebral malformation (2011) Mamm. Genome, 22, pp. 362-376; Chapman, G., Sparrow, D.B., Kremmer, E., Dunwoodie, S.L., Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis (2011) Hum. Mol. Genet., 20, pp. 905-916; Moloney, D.J., Shair, L.H., Lu, F.M., Xia, J., Locke, R., Matta, K.L., Haltiwanger, R.S., Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules (2000) J. Biol. Chem., 275, pp. 9604-9611; Kageyama, R., Masamizu, Y., Niwa, Y., Oscillator mechanism of Notch pathway in the segmentation clock (2007) Dev. Dyn., 236, pp. 1403-1409; Gonzalez, A., Manosalva, I., Liu, T., Kageyama, R., Control of Hes7 expression by Tbx6, the Wnt pathway and the chemical Gsk3 inhibitor LiCl in the mouse segmentation clock (2013) PLoS ONE, 8, p. e53323; Kawamura, A., Koshida, S., Hijikata, H., Ohbayashi, A., Kondoh, H., Takada, S., Groucho-associated transcriptional repressor ripply1 is required for proper transition from the presomitic mesoderm to somites (2005) Dev. Cell, 9, pp. 735-744; Biris, K.K., Dunty, W.C., Jr., Yamaguchi, T.P., Mouse Ripply2 is downstream of Wnt3a and is dynamically expressed during somitogenesis (2007) Dev. Dyn., 236, pp. 3167-3172; Hitachi, K., Danno, H., Tazumi, S., Aihara, Y., Uchiyama, H., Okabayashi, K., Kondow, A., Asashima, M., The Xenopus Bowline/Ripply family proteins negatively regulate the transcriptional activity of T-box transcription factors (2009) Int. J. Dev. Biol., 53, pp. 631-639; Hitachi, K., Danno, H., Kondow, A., Ohnuma, K., Uchiyama, H., Ishiura, S., Kurisaki, A., Asashima, M., Physical interaction between Tbx6 and mespb is indispensable for the activation of bowline expression during Xenopus somitogenesis (2008) Biochem. Biophys. Res. Commun., 372, pp. 607-612; Kondow, A., Hitachi, K., Okabayashi, K., Hayashi, N., Asashima, M., Bowline mediates association of the transcriptional corepressor XGrg-4 with Tbx6 during somitogenesis in Xenopus (2007) Biochem. Biophys. Res. Commun., 359, pp. 959-964; Okubo, T., Kawamura, A., Takahashi, J., Yagi, H., Morishima, M., Matsuoka, R., Takada, S., Ripply3, a Tbx1 repressor, is required for development of the pharyngeal apparatus and its derivatives in mice (2011) Development, 138, pp. 339-348; Janesick, A., Shiotsugu, J., Taketani, M., Blumberg, B., RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm (2012) Development, 139, pp. 1213-1224; McManus, C.J., Graveley, B.R., RNA structure and the mechanisms of alternative splicing (2011) Curr. Opin. Genet. Dev., 21, pp. 373-379; Hollins, C., Zorio, D.A., MacMorris, M., Blumenthal, T., U2AF binding selects for the high conservation of the C. elegans 3′ splice site (2005) RNA, 11, pp. 248-253; Lazarus, S., McInerney-Leo, A.M., McKenzie, F.A., Baynam, G., Broley, S., Cavan, B.V., Munns, C.F., Terhal, P.A., The IFITM5 mutation c.-14C>T results in an elongated transcript expressed in human bone; and causes varying phenotypic severity of osteogenesis imperfecta type V (2014) BMC Musculoskelet. Disord., 15, p. 107; McInerney-Leo, A.M., Schmidts, M., Cortes, C.R., Leo, P.J., Gener, B., Courtney, A.D., Gardiner, B., Marshall, M., Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60 (2013) Am. J. Hum. Genet., 93, pp. 515-523; Umesono, K., Murakami, K.K., Thompson, C.C., Evans, R.M., Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors (1991) Cell, 65, pp. 1255-1266; Blau, H.M., Pavlath, G.K., Hardeman, E.C., Chiu, C.P., Silberstein, L., Webster, S.G., Miller, S.C., Webster, C., Plasticity of the differentiated state (1985) Science, 230, pp. 758-766; Yaffe, D., Saxel, O., Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle (1977) Nature, 270, pp. 725-727
Keywords: mutant protein, RIPPLY2 protein, unclassified drug, basic helix loop helix transcription factor, Mesp2 protein, mouse, repressor protein, Ripply2 protein, mouse, stop codon, Tbx6 protein, mouse, transcription factor, animal experiment, Article, autosomal dominant inheritance, consensus sequence, controlled study, defense mechanism, female, gene frequency, gene interaction, gene mutation, gene sequence, genetic association, human, male, molecular cloning, mouse, nonhuman, priority journal, protein protein interaction, segmentation defect of the vertebrae, signal transduction, spine disease, animal, bone dysplasia, C57BL mouse, cell culture, disease model, exome, exon, genetics, heterozygote, high throughput sequencing, knockout mouse, metabolism, mutation, nucleotide sequence, pathology, pedigree, quantitative trait, RNA splicing, somite, spine, Vertebrata, Animals, Basic Helix-Loop-Helix Transcription Factors, Bone Diseases, Developmental, Cells, Cultured, Codon, Nonsense, Disease Models, Animal, DNA Mutational Analysis, Exons, High-Throughput Nucleotide Sequencing, Mice, Mice, Inbred C57BL, Mice, Knockout, Mutant Proteins, Quantitative Trait, Heritable, Repressor Proteins, Somites, Transcription Factors
DOI: 10.1093/hmg/ddu534
ISSN: 0964-6906
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Funding:
Copyright Owner: Copyright 2015 Oxford University Press
Deposited On: 30 Mar 2016 05:50
Last Modified: 30 Mar 2016 22:00

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page