Surface-mediated selective photocatalytic aerobic oxidation reactions on TiO2 nanofibres

Huang, Lizhi, Jia, Jianfeng, Liu, Hongwei, Yuan, Yong, Zhao, Jian, Chen, Shuai, Fan, Weibin, Waclawik, Eric R., Zhu, Huaiyong, & Zheng, Zhanfeng (2015) Surface-mediated selective photocatalytic aerobic oxidation reactions on TiO2 nanofibres. RSC Advances, 5(70), pp. 56820-56831.

View at publisher

Abstract

N-doped TiO2 nanofibres were observed to possess lower aerobic oxidation activity than undoped TiO2 nanofibres in the selective photocatalytic aerobic oxidation of enzylamine and 4-methoxybenzyl alcohol. This was attributed to the reduction free energy of O2 adsorption in the vicinity of nitrogen dopant sites, as indicated by density functional theory (DFT) calculations when three-coordinated oxygen atoms are substituted by nitrogen atoms. It was found that the activity recovered following a controlled calcination of the N-doped NFs in air. The dependence of the conversion of benzylamine and 4-methoxybenzyl alcohol on the intensity of light irradiation confirmed that these reactions were driven by light. Action spectra showed that the two oxidation reactions are responsive to light from the UV region through to the visible light irradiation range. The extended light absorption wavelength range in these systems compared to pure TiO2 materials was found to result from the formation of surface complex species following adsorption of reactants onto the catalysts' surface, evidenced by the in situ IR experiment. Both catalytic and in situ IR results reveal that benzaldehyde is the intermediate in the aerobic oxidation of benzylamine to N-benzylidenebenzylamine process.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

15 since deposited on 28 Mar 2016
15 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 94249
Item Type: Journal Article
Refereed: Yes
Keywords: photocatalysis, TiO2 nanofibers, aerobic oxidation
DOI: 10.1039/c5ra07518a
ISSN: 2046-2069
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Catalysis and Mechanisms of Reactions (030601)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Colloid and Surface Chemistry (030603)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Physical Chemistry not elsewhere classified (030699)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2015 The Royal Society of Chemistry
Deposited On: 28 Mar 2016 23:44
Last Modified: 02 Apr 2016 12:39

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page