Modeling transport through an environment crowded by a mixture of obstacles of different shapes and sizes

Ellery, Adam, Baker, Ruth, McCue, Scott W., & Simpson, Matthew (2016) Modeling transport through an environment crowded by a mixture of obstacles of different shapes and sizes. Physica A: Statistical Mechanics and its Applications, 449, pp. 74-84.

View at publisher


Many biological environments are crowded by macromolecules, organelles and cells which can impede the transport of other cells and molecules. Previous studies have sought to describe these effects using either random walk models or fractional order diffusion equations. Here we examine the transport of both a single agent and a population of agents through an environment containing obstacles of varying size and shape, whose relative densities are drawn from a specified distribution. Our simulation results for a single agent indicate that smaller obstacles are more effective at retarding transport than larger obstacles; these findings are consistent with our simulations of the collective motion of populations of agents. In an attempt to explore whether these kinds of stochastic random walk simulations can be described using a fractional order diffusion equation framework, we calibrate the solution of such a differential equation to our averaged agent density information. Our approach suggests that these kinds of commonly used differential equation models ought to be used with care since we are unable to match the solution of a fractional order diffusion equation to our data in a consistent fashion over a finite time period.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 94811
Item Type: Journal Article
Refereed: Yes
Keywords: Random walk, Crowded transport, Fractional diffusion equation, Diffusion, Hindered transport
DOI: 10.1016/j.physa.2015.12.123
ISSN: 0378-4371
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > APPLIED MATHEMATICS (010200) > Biological Mathematics (010202)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Mathematical Sciences
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 14 Apr 2016 22:52
Last Modified: 18 Apr 2016 00:08

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page