Evaluation of the AlgerBrush II rotating burr as a tool for inducing ocular surface failure in the New Zealand White rabbit

Li, Fiona J., Nili, Elham, Lau, Cora, Richardson, Neil A., Walshe, Jennifer, Nigel, Barnett, Cronin, Brendan G., Hirst, Lawrence W., Schwab, Ivan R., Chirila, Traian V., & Harkin, Damien G. (2016) Evaluation of the AlgerBrush II rotating burr as a tool for inducing ocular surface failure in the New Zealand White rabbit. Experimental Eye Research, 147, pp. 1-11.

[img] Accepted Version (PDF 1MB)
Administrators only until June 2017 | Request a copy from author
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

View at publisher

Abstract

The New Zealand White rabbit has been widely used as a model of limbal stem cell deficiency (LSCD). Current techniques for experimental induction of LSCD utilize caustic chemicals, or organic solvents applied in conjunction with a surgical limbectomy. While generally successful in depleting epithelial progenitors, the depth and severity of injury is difficult to control using chemical-based methods. Moreover, the anterior chamber can be easily perforated while surgically excising the corneal limbus. In the interest of creating a safer and more defined LSCD model, we have therefore evaluated a mechanical debridement technique based upon use of the AlgerBrush II rotating burr. An initial comparison of debridement techniques was conducted in situ using 24 eyes in freshly acquired New Zealand White rabbit cadavers. Techniques for comparison (4 eyes each) included: (1) non-wounded control, (2) surgical limbectomy followed by treatment with 100% (v/v) n-heptanol to remove the corneal epithelium (1-2 minutes), (3) treatment of both limbus and cornea with n-heptanol alone, (4) treatment of both limbus and cornea with 20% (v/v) ethanol (2-3 minutes), (5) a 2.5-mm rounded burr applied to both the limbus and cornea, and (6) a 1-mm pointed burr applied to the limbus, followed by the 2.5-mm rounded burr applied to the cornea. All corneas were excised and processed for histology immediately following debridement. A panel of four assessors subsequently scored the degree of epithelial debridement within the cornea and limbus using masked slides. The 2.5-mm burr most consistently removed the corneal and limbal epithelia. Islands of limbal epithelial cells were occasionally retained following surgical limbectomy/heptanol treatment, or use of the 1-mm burr. Limbal epithelial cells were consistently retained following treatment with either ethanol or n-heptanol alone, with ethanol being the least effective treatment overall. The 2.5-mm burr method was subsequently evaluated in the right eye of 3 live rabbits by weekly clinical assessments (photography and slit lamp examination) for up to 5 weeks, followed by histological analyses (hematoxylin & eosin stain, periodic acid-Schiff stain and immunohistochemistry for keratin 3 and 13). All 3 eyes that had been completely debrided using the 2.5-mm burr displayed symptoms of ocular surface failure as defined by retention of a prominent epithelial defect (~40% of corneal surface at 5 weeks), corneal neovascularization (2 to 3 quadrants), reduced corneal transparency and conjunctivalization of the corneal surface (demonstrated by the presence of goblet cells and/or staining for keratin 13). In conclusion, our findings indicate that the AlgerBrush II rotating burr is an effective method for the establishment of ocular surface failure in New Zealand White rabbits. In particular, we recommend use of the 2.5-mm rotating burr for improved efficiency of epithelial debridement and safety compared to surgical limbectomy.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 94906
Item Type: Journal Article
Refereed: Yes
Keywords: Cornea, Wound healing, Animal models, New Zealand White rabbit, Debridement, Rotating burr, Ocular surface failure, Limbal stem cell deficiency
DOI: 10.1016/j.exer.2016.04.005
ISSN: 1096-0007
Subjects: Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > MEDICAL BIOTECHNOLOGY (100400) > Regenerative Medicine (incl. Stem Cells and Tissue Engineering) (100404)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > OPTOMETRY AND OPHTHALMOLOGY (111300) > Ophthalmology (111301)
Divisions: Current > Schools > School of Biomedical Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Funding:
Copyright Owner: Copyright 2016 Elsevier
Copyright Statement: Licensed under the Creative Commons Attribution; Non-Commercial; No-Derivatives 4.0 International. DOI: 10.1016/j.exer.2016.04.005
Deposited On: 17 Apr 2016 23:36
Last Modified: 27 Aug 2016 08:51

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page