Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia

He, Congrong, Miljevic, Branka, Crilley, Leigh R., Surawski, Nicholas C., Bartsch, Jennifer, Salimi, Farhad, Uhde, Erik, Schnelle-Kreis, Jürgen, Orasche, Jürgen, Ristovski, Zoran, Ayoko, Godwin A., Zimmermann, Ralf, & Morawska, Lidia (2016) Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia. Environment International, 91, pp. 230-242.

[img] Accepted Version (PDF 1MB)
Administrators only until May 2018 | Request a copy from author

View at publisher


Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10-30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality. The current results provide a solid platform for more detailed health and modelling investigations in the future.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 95275
Item Type: Journal Article
Refereed: Yes
Keywords: bushfire, wildfire, aerosol, particle, air pollutant, aerosol mass spectrometry
DOI: 10.1016/j.envint.2016.02.030
ISSN: 0160-4120
Subjects: Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > ATMOSPHERIC SCIENCES (040100) > Atmospheric Aerosols (040101)
Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > ENVIRONMENTAL SCIENCE AND MANAGEMENT (050200) > Environmental Monitoring (050206)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ENVIRONMENTAL ENGINEERING (090700) > Environmental Engineering not elsewhere classified (090799)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Current > Schools > School of Advertising, Marketing & Public Relations
Copyright Owner: Copyright 2016 Elsevier
Copyright Statement: Licensed under the Creative Commons Attribution; Non-Commercial; No-Derivatives 4.0 International. DOI: 10.1016/j.envint.2016.02.030
Deposited On: 03 May 2016 01:10
Last Modified: 08 May 2016 04:40

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page