QUT ePrints

A Performance Evaluation of Using Fish-Eye Lenses in Low- Altitude UAV Mapping Applications

Gurtner, Alex, Boles, Wageeh W., & Walker, Rodney A. (2007) A Performance Evaluation of Using Fish-Eye Lenses in Low- Altitude UAV Mapping Applications. In 12th Australian International Aerospace Congress (AIAC), Melbourne.

Abstract

One of the major uses of unmanned aerial vehicles (UAVs) has been to provide aerial imagery for applications, such as quantitative remote sensing and surveillance. UAVs have the potential to provide this imagery in a much more cost-effective manner than satellite systems. Additionally they have the added advantage of being able to collect the data on an "as needed" basis (eg. daily) and can also fly below cloud cover. However, there are technical challenges such as blur effects, payload limits and the lower altitudes of operation which reduce the swath width. The aim of this research is to understand the benefits and limitations of using a downward looking camera with a fish-eye lens for low-altitude UAV aerial mapping missions. Fish-eyes have been found to have valuable characteristics in their ability to capture scene data covering a wide field of view (FOV). Lens makers have copied this characteristic of a large FOV and applied it to fish-eye lenses, which are commonly used in photograph. The fish-eye lens has potential benefits in UAV terrain mapping, particularly at low altitudes, because of its large FOV. The large FOV makes the camera less sensitive to movements of the aircraft. A downward-looking camera provides images that show a 180x360 degrees view of the scene, which also includes the horizon. The ability of the downward looking camera to capture details of scene in front and back at the same time provides additional information that can be used for height estimation of ground obstacles and attitude estimation of the aircraft. However, the fish-eye lens also produces heavy distortion in the captured images, which needs to be rectified. The lower altitude of operation produces a larger motion blur component which must be deblurred. The rectified and deblurred images will build the basis for the mapping process, which merges single, distorted and rotated pictures to a mosaic map. This paper presents the benefits and limitations of using fish-eye lenses in low-altitude UAV mapping applications. The mapping uses only lightly distorted parts of the fish-eye images. Further, techniques to restore uncovered areas using the heavily distorted parts of the fish-eye images are introduced. Finally, this paper demonstrates precise processes to rectify the distorted fish-eye images, addresses deblurring processes and some quality issues for quantitative remote sensing purposes.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

598 since deposited on 17 Mar 2008
114 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 9683
Item Type: Conference Paper
Additional URLs:
Keywords: Unmanned Aerial Systems, UAV, Performance Evaluation, Fish, eye Lens, Mapping, Image Rectification, Surveillance
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AEROSPACE ENGINEERING (090100) > Aerospace Engineering not elsewhere classified (090199)
Divisions: Current > Research Centres > Australian Research Centre for Aerospace Automation
Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2007 (please consult author)
Deposited On: 17 Mar 2008
Last Modified: 29 Feb 2012 23:40

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page