An optimised direct lysis method for gene expression studies on low cell numbers

Le, Anh Viet-Phuong, Huang, Dexing, Blick, Tony, Thompson, Erik W., & Dobrovic, Alexander (2015) An optimised direct lysis method for gene expression studies on low cell numbers. Scientific Reports, 5, Article number: 12859.

View at publisher (open access)

Abstract

There is increasing interest in gene expression analysis of either single cells or limited numbers of cells. One such application is the analysis of harvested circulating tumour cells (CTCs), which are often present in very low numbers. A highly efficient protocol for RNA extraction, which involves a minimal number of steps to avoid RNA loss, is essential for low input cell numbers. We compared several lysis solutions that enable reverse transcription (RT) to be performed directly on the cell lysate, offering a simple rapid approach to minimise RNA loss for RT. The lysis solutions were assessed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in low cell numbers isolated from four breast cancer cell lines. We found that a lysis solution containing both the non-ionic detergent (IGEPAL CA-630, chemically equivalent to Nonidet P-40 or NP-40) and bovine serum albumin (BSA) gave the best RT-qPCR yield. This direct lysis to reverse transcription protocol outperformed a column-based extraction method using a commercial kit. This study demonstrates a simple, reliable, time- and cost-effective method that can be widely used in any situation where RNA needs to be prepared from low to very low cell numbers.

Impact and interest:

2 citations in Scopus
Search Google Scholar™
2 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

3 since deposited on 31 Jul 2016
3 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 97709
Item Type: Journal Article
Refereed: Yes
DOI: 10.1038/srep12859
ISSN: 2045-2322
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > ONCOLOGY AND CARCINOGENESIS (111200)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > ONCOLOGY AND CARCINOGENESIS (111200) > Cancer Cell Biology (111201)
Divisions: Current > Schools > School of Biomedical Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: The Author
Copyright Statement: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Deposited On: 31 Jul 2016 22:36
Last Modified: 19 Dec 2016 03:21

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page