Comparison of grain yields and N2O emissions on Oxisol and Vertisol soils in response to fertiliser N applied as urea or urea coated with the nitrification inhibitor 3,4-dimethylpyrazole phosphate

De Antoni Migliorati, Massimiliano, Bell, Mike, Lester, David, Rowlings, David W., Scheer, Clemens, de Rosa, Daniele, & Grace, Peter R. (2016) Comparison of grain yields and N2O emissions on Oxisol and Vertisol soils in response to fertiliser N applied as urea or urea coated with the nitrification inhibitor 3,4-dimethylpyrazole phosphate. Soil Research, 54(5), pp. 552-564.

View at publisher

Abstract

The potential for elevated nitrous oxide (N2O) losses is high in subtropical cereal cropping systems in north-east Australia, where the fertiliser nitrogen (N) input is one single application at or before planting. The use of urea coated with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) has been reported to substantially decrease N2O emissions and increase crop yields in humid, high-intensity rainfall environments. However, it is still uncertain whether this product is similarly effective in contrasting soil types in the cropping region of north-east Australia. In this study the grain yield response of sorghum (Sorghum bicolor L. Moench) to rates of fertiliser N applied as urea or urea coated with DMPP were compared in crops grown on a Vertisol and an Oxisol in southern Queensland. Seasonal N2O emissions were monitored on selected treatments for the duration of the cropping season and the early stages of a subsequent fallow period using a fully automated high-frequency greenhouse gas measuring system. On each soil the tested treatments included an unfertilised control (0 kg N ha–1) and two fertilised treatments chosen on the basis of delivering at least 90% of seasonal potential grain yield (160 and 120 kg N ha–1 on the Vertisol and Oxisol respectively) or at a common (suboptimal) rate at each site (80 kg N ha–1). During this study DMPP had a similar impact at both sites, clearly inhibiting nitrification for up to 8 weeks after fertiliser application. Despite the relatively dry seasonal conditions during most of the monitoring period, DMPP was effective in abating N2O emissions on both soils and on average reduced seasonal N2O emissions by 60% compared with conventional urea at fertiliser N rates equivalent to those producing 90% of site maximum grain yield. The significant abatement of N2O emissions observed with DMPP, however, did not translate into significant yield gains or improvements in agronomic efficiencies of fertiliser N use. These results may be due to the relatively dry growing season conditions before the bulk of crop N acquisition, which limited the exposure of fertiliser N to large losses due to leaching and denitrification.

Impact and interest:

2 citations in Scopus
Search Google Scholar™
2 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

14 since deposited on 01 Aug 2016
14 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 97752
Item Type: Journal Article
Refereed: Yes
Keywords: automated greenhouse gas measuring system, denitrification, nitrogen response
DOI: 10.1071/SR15336
ISSN: 1838-6768
Subjects: Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000)
Australian and New Zealand Standard Research Classification > AGRICULTURAL AND VETERINARY SCIENCES (070000)
Australian and New Zealand Standard Research Classification > AGRICULTURAL AND VETERINARY SCIENCES (070000) > AGRICULTURE LAND AND FARM MANAGEMENT (070100)
Australian and New Zealand Standard Research Classification > AGRICULTURAL AND VETERINARY SCIENCES (070000) > CROP AND PASTURE PRODUCTION (070300)
Divisions: Current > Schools > School of Earth, Environmental & Biological Sciences
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2016 CSIRO Publishing
Deposited On: 01 Aug 2016 00:48
Last Modified: 07 Sep 2016 18:33

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page