Controllable magnetic correlation between two impurities by spin-orbit coupling in graphene

Hu, F.M., Kou, Liangzhi, & Frauenheim, Thomas (2015) Controllable magnetic correlation between two impurities by spin-orbit coupling in graphene. Scientific Reports, 5, Article Number-8943.

View at publisher


Two magnetic impurities on the edge of a zigzag graphene nanoribbon strongly interact with each other via indirect coupling, which can be mediated by conducting carriers. By means of Quantum Monte Carlo (QMC) simulations, we find that the spin-orbit coupling λ and the chemical potential μ in system can be used to drive the transition of local-spin exchange from ferromagnetism to anti-ferromagnetism. Since the tunable ranges for λ and μ in graphene are experimentally reachable, we thus open the possibilities for its device application. The symmetry in spatial distribution is broken by the vertical and the transversal spin-spin correlations due to the effect of spin-orbit coupling, leading to the spatial anisotropy of spin exchange, which distinguish our findings from the case in normal Fermi liquid.

Impact and interest:

2 citations in Scopus
Search Google Scholar™
2 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

2 since deposited on 29 Aug 2016
2 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 98208
Item Type: Journal Article
Refereed: Yes
DOI: 10.1038/srep08943
ISSN: 2045-2322
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2015 The Author(s)
Copyright Statement: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit
Deposited On: 29 Aug 2016 03:23
Last Modified: 31 Aug 2016 01:51

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page