Propagation rate coefficients of acrylate-methacrylate free-radical bulk copolymerizations

Buback, M., Feldermann, A., Barner-Kowollik, C., & Lacík, I. (2001) Propagation rate coefficients of acrylate-methacrylate free-radical bulk copolymerizations. Macromolecules, 34(16).

View at publisher


Copolymerization propagation rate coefficients, kp,copo, have been measured for the binary systems methyl acrylate (MA)-dodecyl methacrylate (DMA), butyl acrylate (BA)-methyl methacrylate (MMA), dodecyl acrylate (DA)-DMA, and DA-MMA at 40 °C and 1000 bar by the pulsed laser polymerization (PLP)-size-exclusion chromatography (SEC) technique. These acrylate-methacrylate systems are interesting because of the significant difference, by more than 1 order of magnitude, between the homopropagation rate coefficients of the two families. Reactivity ratios, ri, are determined from monomer feed compositions and the NMR spectroscopically measured copolymer compositions. The resulting ri values for the four acrylate-methacrylate copolymerizations agree within experimental accuracy. Moreover, these ri data are surprisingly close to reactivity ratio data estimated from individual addition rate coefficients to MA and MMA, respectively, of appropriate small (meth)acrylate-type free radicals. Such addition rate coefficients have been determined via EPR in liquid solution by the Hanns Fischer group. The terminal model allows for excellent individual fits of composition and of kp,copo for each of the four systems. The implicit penultimate unit effect (IPUE) model (and the explicit penultimate unit effect (EPUE) model) are capable of simultaneously fitting composition and rate data for the MMA-BA and DMA-MA systems whereas both models fail to provide a satisfactory representation of the two DA-containing systems. The data suggest that, with DA being one of the comonomers, individual propagation rate coefficients are not adequately described by consideration of only terminal and penultimate units at the free-radical terminus. On the other hand, ratioing individual propagation rate coefficients of free radicals with the same penultimate units seems to eliminate most of the impact of the penultimate units. For this reason the resulting and widely used "terminal model" reactivity ratios are reasonable and meaningful kinetic quantities although penultimate effects on the individual propagation rate coefficients undoubtedly operate.

Impact and interest:

63 citations in Scopus
Search Google Scholar™
62 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99048
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :63
Export Date: 5 September 2016
Correspondence Address: Buback, M.; Inst. für Physikalische Chemie, Georg-August-Universitat Gottingen, Tammannstrasse 6, D-37077 Göttingen, Germany
References: Olaj, O.F., Schnöll-Bitai, I., (1989) Eur. Polym. J., 25, p. 635; Olaj, O.F., Bitai, I., Hinkelmann, F., (1987) Macromol. Chem., 188, p. 1689; Davis, T.P., O'Driscoll, K.F., Piton, M.C., Winnik, M.A., (1990) Macromolecules, 23, p. 2113; Hutchinson, R.A., Paquet Jr., D.A., McMinn, J.H., Beuermann, S., Fuller, R.E., Jackson, C., (1995) DECHEMA Monogr., 131, p. 467; Lyons, R.A., Hutovic, J., Piton, M.C., Christie, D.I., Clay, P.A., Manders, B.G., Cable, S.H., Gilbert, R.G., (1996) Macromolecules, 29, p. 1918; Beuermann, S., Paquet Jr., D.A., McMinn, J.H., Hutchinson, R.A., (1996) Macromolecules, 29, p. 4206; Van Herk, A.M., (1997) J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 198, p. 1545; Buback, M., (1996) Macromol. Symp., 111, p. 229; Buback, M., Gilbert, R.G., Hutchinson, R.A., Klumpermann, B., Kuchta, F.-D., Manders, B.G., O'Driscoll, K.F., Schweer, J., (1995) Macromol. Chem. Phys., 196, p. 3267; Beuermann, S., Buback, M., Davis, T.P., Gilbert, R.G., Hutchinson, R.A., Olaj, O.F., Russell, G.T., Van Herk, A.M., (1997) Macromol. Chem. Phys., 198, p. 1545; Buback, M., Geers, U., Kurz, C.H., Heyne, J., (1997) Macromol. Chem. Phys., 198, p. 3451; Davis, T.P., O'Driscoll, K.F., Piton, M.C., Winnik, M.A., (1989) J. Polym. Sci.: Part C: Polym. Lett., 27, p. 181; Davis, T.P., O'Driscoll, K.F., Piton, M.C., Winnik, M.A., (1990) Macromolecules, 23, p. 2113; Davis, T.P., O'Driscoll, K.F., Piton, M.C., Winnik, M.A., (1991) Polym. Int., 24, p. 65; Schoonbrood, H.A.S., Van der Reijen, B., De Kock, J.B.L., Manders, B.G., Van Herk, A.M., German, A.L., (1995) Macromol. Rapid Commun., 16, p. 119; Hutchinson, R.A., McMinn, J.H., Paquet Jr., D.A., Beuermann, S., Jackson, C., (1997) Ind. Eng. Chem. Res., 36, p. 1103; Coote, M.L., Davis, T.P., (1999) Prog. Polym. Sci., 24, p. 1217; Fukuda, T., Ma, Y.-D., Inagaki, H., (1985) Macromolecules, 18, p. 17; Schweer, J., (1993) Macromol. Chem., Theory Simul., 2, p. 485; Fukuda, T., Ma, Y.-D., Kubo, M., Inagaki, H., (1991) Macromolecules, 24, p. 370; Wu, J.Q., Beranek, I., Fischer, H., (1995) Helv. Chim. Acta, 78, p. 194; Walbinger, M., Wu, J.Q., Fischer, H., (1995) Helv. Chim. Acta, 78, p. 910; Buback, M., Dietzsch, H., (2001) Macromol. Chem. Phys., 202, p. 1173; Madruga, E.L., Fernandez-Garcia, M., (1996) Macromol. Chem. Phys., 197, p. 3743; Mayo, F.R., Lewis, F.M., (1954) J. Am. Chem. Soc., 66, p. 1944; Buback, M., Hinton, C., (1997) High-pressure Techniques in Chemistry and Physics - A practical approach, , Holzapfel, B. W., Isaacs, N. S., Eds.; Oxford University Press: Oxford, England; Beuermann, S., Buback, M., Russell, G.T., (1995) Macromol. Chem. Phys., 196, p. 2493; Grubisic, Z., Rempp, P., Benoit, H.A., (1967) J. Polym. Sci., Polym. Lett., 5, p. 753; Haney, A.M., (1985) Am. Lab., 17, p. 41; Haney, A.M., (1985) Am. Lab., 17, p. 116; Yau, W., Rementer, S.W., (1990) J. Liq. Chrom., 13, p. 627; Buback, M., Kurz, C.H., Schmaltz, C., (1998) Macromol. Chem. Phys., 199, p. 1721; Kowollik, C., (1999), Ph.D. Thesis, GöttingenHill, D.J.T., O'Donnell, H., O'Sullivan, P.W., (1982) Macromolecules, 15, p. 960; Hill, D.J.T., Lang, A.P., O'Donnell, H., O'Sullivan, P.W., (1989) Eur. Polym. J., 9, p. 911; Jones, S.A., Prementine, G.S., Tirrell, D.A., (1985) J. Am. Chem. Soc., 107, p. 5275; Fukuda, T., Ma, Y.-D., Inagaki, H., (1985) Macromolecules, 18, p. 26; Bevington, P.R., (1969) Data Reduction and Error Analysis for the Physical Sciences, , McGraw-Hill: New York; Fischer, H., Radom, L., (2001) Angew. Chem. Int. Ed., 40, p. 1340
Keywords: Pulsed laser polymerization (PLP), Acrylic monomers, Copolymerization, Copolymers, Free radical polymerization, Free radicals, Mathematical models, Nuclear magnetic resonance spectroscopy, Paramagnetic resonance, Pulsed laser applications, Rate constants, Size exclusion chromatography, Polyacrylates
DOI: 10.1021/ma002231w
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 22 Sep 2016 04:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page