Reversible addition fragmentation chain transfer copolymerization: Influence of the RAFT process on the copolymer composition

Feldermann, A., Ah Toy, A., Phan, H., Stenzel, M. H., Davis, T. P., & Barner-Kowollik, C. (2004) Reversible addition fragmentation chain transfer copolymerization: Influence of the RAFT process on the copolymer composition. Polymer, 45(12).

View at publisher


Reversible addition fragmentation chain transfer (RAFT) mediated and conventional copolymerizations at low monomer conversions have been carried out for the systems methyl methacrylate (MMA)-styrene, methyl acrylate (MA)-styrene and methyl methacrylate-butyl acrylate (BA). The polymer samples have been analyzed via 1H-NMR spectroscopy to obtain the copolymer composition and the terminal model reactivity ratios. In the RAFT mediated copolymerizations, the polymer mole fraction of the monomer with the larger reactivity ratio is increased compared to the conventional copolymerization. Simulations have been carried out using the program package PREDICI ® to examine possible explanations for the experimental findings. The simulations demonstrate that the RAFT process itself may alter the macroradical populations and the copolymer composition by offering additional reaction pathways. Further, the rate coefficients for the initiation reaction and the pre-equilibrium play an important role in determining the copolymer composition. The rate coefficients governing the main equilibrium of the RAFT process have only a minor impact on the copolymer composition. © 2004 Elsevier Ltd. All rights reserved.

Impact and interest:

59 citations in Scopus
56 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99084
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :59
Export Date: 5 September 2016
Correspondence Address: Barner-Kowollik, C.; Ctr. for Adv. Macromolecular Design, Sch. of Chem. Eng. and Indust. Chem., University of New South Wales, Sydney, NSW 2052, Australia; email:
Chemicals/CAS: acrylic acid butyl ester, 141-32-2; acrylic acid methyl ester, 96-33-3; methacrylic acid methyl ester, 80-62-6
References: Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem Rev, 101, p. 3661; Wang, J.S., Matyjaszewski, K., (1995) J Am Chem Soc, 117, p. 5614; Mayadunne, R.T.A., Rizzardo, E., Chiefari, J., Chong, Y.K., Moad, G., Thang, S.H., (1999) Macromolecules, 32, p. 6977; Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Jeffery, J., Le T., P.T., Mayadunne, R.T.A., Thang, S.H., (1998) Macromolecules, 31, p. 5559; Barner-Kowollik, C., Davis, T.P., Heuts, J.P.A., Stenzel, M.H., Vana, P., Whittaker, M., (2003) J Polym Sci, Part A: Polym Chem, 41, p. 365; Chong, Y.K., Le T., P.T., Moad, G., Rizzardo, E., Thang, S.H., (1999) Macromolecules, 32, p. 2071; Stenzel-Rosenbaum, M., Davis, T.P., Fane, A.G., Chen, V., (2001) J Polym Sci, Part A: Polym Chem, 39, p. 2777; Stenzel-Rosenbaum, M., Davis, T.P., Fane, A.G., Chen, V., (2001) Angew Chem, Int Ed, 40, p. 3428; Ah Toy, A., Vana, P., Davis, T.P., Barner-Kowollik, C., (2004) Macromolecules, 37, p. 744. , and literature citied therein; Kwak, Y., Goto, A., Fukuda, T., (2004) Macromolecules, 37, p. 1219. , and literature citied therein; Aerdts, A.M., German, A.L., Van Der Velden, G.P.M., (1994) Magn Res Chem, 32, p. 80; Dube, M., Penlidis, A., (1995) Polymer, 36, p. 587; Davis, T.P., O'Driscoll, K.F., Piton, M.C., Winnik, M.A., (1990) Macromolecules, 23, p. 2113; Coote, M.L., Zammit, M.D., Willet, G.D., Davis, T.P., (1997) Macromolecules, 30, p. 8182; Coote, M.L., Davis, T.P., Johnston, L., (1997) Macromolecules, 30, p. 8191; Coote, M.L., Davis, T.P., (1999) Progr Polym Sci, 24, p. 1217; Coote, M.L., Davis, T.P., Radom, L., (1999) Macromolecules, 32, p. 2935; Schoonbrood, H.A.S., Van Der Reijen, B., De Kock, J.B.L., Manders, B.G., Van Herk, A.M., German, A.L., (1995) Macromol Rapid Commun, 16, p. 119; Hutchinson, R.A., McMinn, J.H., Paquet Jr., D.A., Beuermann, S., Jackson, C., (1997) Ind Engng Chem Res, 36, p. 1103; Buback, M., Feldermann, A., Barner-Kowollik, C., Lacík, I., (2001) Macromolecules, 34, p. 5439; Fukuda, T., Ma, Y.D., Inagaki, H., (1985) Macromolecules, 18, p. 17; Fukuda, T., Ma, Y.D., Kubo, M., Inagaki, H., (1991) Macromolecules, 24, p. 370; Merz, E., Alfrey, T., Goldfinger, G., (1946) J Polym Sci, 1, p. 75; Coote, M.L., Davis, T.P., Copolymerization kinetics (2002) Handbook of Radical Polymerization, , T.P. Davis, & K. Matyjaszewski. New York: Wiley; Wang, J.S., Greszta, D., Matyjaszewski, K., (1995) Polym Mater Sci Engng, 73, p. 416; Patten, T.E., Matyjaszewski, K., (1998) Adv Mater, 10, p. 901; Davis, K.A., Matyjaszewski, K., (2002) Adv Polym Sci, 159, p. 2; Madruga, E.L., (2002) Prog Polym Sci, 27, p. 1879; Heuts, J.P.A., Davis, T.P., (1998) Macromol Rapid Commun, 19, p. 371; Haddleton, D.M., Crossman, M.C., Hunt, K.H., Topping, C., Waterson, C., Suddaby, K.G., (1997) Macromolecules, 30, p. 3992; Matyjaszewski, K., (1997) Macromol Sci, Pure Appl Chem, 34, p. 1785; Matyjaszewski, K., (1998) Macromolecules, 31, p. 4710; Matyjaszewski, K., (2002) Macromolecules, 35, p. 6773; Klumperman, B., Chambard, G., Brinkhuis, R.H.G., (2003) ACS Symp Series, 854, p. 180; Barner-Kowollik, C., Vana, P., Quinn, J.F., Davis, T.P., (2002) J Pol Sci-Chem, 40, p. 1058; Oae, S., Yagihara, T., Okabe, T., (1972) Tetrahedron, 28, p. 3203; Bai, R.-K., You, Y.-Z., Pan, C.-Y., (2001) Macromol Chem Phys, 202, p. 1970; The composition was determined from samples where the polymer has been isolated by precipitation as well as evaporation of the monomers. Both methods of polymer isolation yield the same polymer composition within experimental error. However, the method of precipitation is preferable, since it quantitatively removes all monomers, whereas the evaporation method leaves monomer traces that have to be considered in the NMR analysisMayo, F.R., Lewis, F.M., (1954) J Am Chem Soc, 66, p. 1944; Van Herk, A.M., CONTOUR (V1.8); Van Herk, A.M., (1995) Chem Edu, 72, p. 138; Van Herk, A.M., Dröge, T., (1997) Macromol Theory Sim, 6, p. 1263; Beuermann, S., Buback, M., Davis, T.P., Gilbert, R.G., Hutchinson, R.A., Olaj, O.F., Russell, G.T., Van Herk, A.M., (1997) Macromol Chem Phys, 198, p. 1545; Coote, M.L., Davis, T.P., Klumperman, B., Monteiro, M., (1998) JMS - Rev Macromol Chem Phys, 38, p. 567; Fernandez-Montreal, C., Martinez, G., Sanchez-Charves, M., Lopez Madruga, E.L., (2001) J Polym Sci, Part A: Polym Chem, 39, p. 2043; Matyjaszewski, K., (2002) Macromolecules, 35, p. 6773; Fueno, T., Furukawa, J., (1964) J Polym Sci, 2, p. 3681; Galbraith, M.N., Moad, G., Solomon, D.H., Spurling, T.H., (1987) Macromolecules, 20, p. 675; O'Driscoll, K.F., Davis, T.P., (1989) Polym Commun, 30, p. 317; Barner Kowollik, C., Quinn, J.F., Morsley, D.R., Davis, T.P., (2001) J Polym Sci, Part A: Polym Chem, 39, p. 1353; Wulkow, M., Busch, M., Davis, T.P., Barner-Kowollik, C., (2004) J Polym Sci Part A: Polym Chem, 42, p. 1441; Ziegler, M.J., Matyjaszewski, K., (2001) Macromolecules, 34, p. 415; Fischer, H., Radom, L., (2001) Angew Chem Int Ed, 40, p. 1340
Keywords: 1H-NMR spectroscopy, Polymerization kinetics, Reversible addition fragmentation chain transfer (RAFT) copolymerization copolymer composition, Composition, Computer simulation, Copolymerization, Monomers, Nuclear magnetic resonance spectroscopy, Polymethyl methacrylates, Copolymer composition, Macroradical populations, Copolymers, acrylic acid butyl ester, acrylic acid methyl ester, copolymer, methacrylic acid methyl ester, monomer, polystyrene derivative, article, chemical composition, chemical structure, correlation coefficient, dissociation constant, equilibrium constant, fragmentation reaction, molecular model, polymerization, proton nuclear magnetic resonance, reaction analysis, sample, simulation, structure analysis, transport kinetics, polymer science
DOI: 10.1016/j.polymer.2004.04.016
ISSN: 00323861
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 22 Sep 2016 04:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page