Amphiphilic block copolymers based on poly(2-acryloyloxyethyl phosphorylcholine) prepared via RAFT polymerisation as biocompatible nanocontainers

Stenzel, M. H., Barner-Kowollik, C., Davis, T. P., & Dalton, H. M. (2004) Amphiphilic block copolymers based on poly(2-acryloyloxyethyl phosphorylcholine) prepared via RAFT polymerisation as biocompatible nanocontainers. Macromolecular Bioscience, 4(4).

View at publisher

Abstract

Amphiphilic block copolymers composed of poly(butyl acrylate) and poly(2-acryloyloxyethyl phosphorylcholine) have been prepared using reversible addition fragmentation transfer (RAFT) polymerisation. The conversion of the polymerisation was determined using online FT NTR spectroscopy. NMR spectroscopy was used not only to support the results obtained from FT NIR spectroscopy but also prove the formation of micelles. Due to the strong aggregation tendency of these block copolymers and the resulting difficulties concerning the molecular weight analysis test experiments were carried out replacing poly(2- acryloyloxyethyl phosphorylcholine) with poly(2-hydroxyethyl acrylate). Micelle size and the aggregation behaviour were investigated using dynamic light scattering. The sizes of the nanocontainers obtained were found to be influenced by the block length as well as the solvent leading to micelles in the range between 40 and 160 nm. The toxicity of the RAFT agent used was then analysed by cell growth inhibition tests.

Impact and interest:

104 citations in Scopus
Search Google Scholar™
99 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99091
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :104
Export Date: 5 September 2016
CODEN: MBAIB
Correspondence Address: Stenzel, M.H.; Ctr. for Adv. Macromolecular Design, Sch. of Chem. Eng. and Indust. Chem., University of New South Wales, Sydney, NSW 2031, Australia
Chemicals/CAS: phosphorylcholine, 107-73-3; poly(2 hydroxyethyl acrylate), 26022-14-0; 2-acryloyloxyethyl phosphorylcholine; Biocompatible Materials; Indicators and Reagents; Phosphorylcholine, 107-73-3; Polymers
References: Campbell, E.J., O'Byrne, V., Stratford, P.W., Vick, T.A., Wiles, M.C., Yianni, Y.P., (1994) ASAIO J., 40, p. 853; Lloyd, A.W., Dropcova, S., Faragher, R.G.A., Gard, P.R., Hanlon, G.W., Mikalovsky, S.V., Olliff, C.J., Filipec, M., (1999) J. Mater. Sci.: Mater. Med., 10, p. 621; Lloyd, A.W., Faragher, R.G.A., Wassall, M., Rhys-Williams, W., Wong, L., Hughs, J.E., Hanlon, G.W., (2000) Contact Lens Anterior Eye, 23, p. 119; Von Segesser, L.K., Olah, A., Leskosek, B., Turina, A., (1993) ASAIO J., 39, p. 43; Yu, J., Lamba, N.M.K., Courtney, J.M., Whateley, T.L., Gaylor, J.D.S., Lowe, G.D.O., Ishihara, K., Nakabayashi, N., (1994) Int. J. Artif. Organs, 17, p. 499; Ishihara, K., Ziats, N.P., Tierney, B.P., Nakabayashi, N., Anderson, J., (1991) J. Biomed. Mater. Res., 25, p. 1397; Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y., Nakabayashi, N., (1998) J. Biomed. Mater. Res., 39, p. 323; Ishihara, K., Oshida, H., Endo, Y., Ueda, T., Watanabe, A., Nakabayashi, N., (1993) J. Biomed. Mater. Res., 27, p. 1309; Long, S.F., Clarke, S., Cavies, M.C., Lewis, A.L., Hanlon, G.W., Lloyd, A.W., (2003) Biomaterials, 24, p. 4115; Nakabayashi, N., Ishihara, K., (1996) Macromol. Symp., 101, p. 405; Takehisa, M., Kaneko, M., Ge, S., (2003) Biomaterials, 24, p. 4507; Xu, J., Yuan, Y., Shan, B., Shen, J., Lin, S., (2003) Colloids Surf., B, 30, p. 215; Ishihara, K., Miyazaki, H., Kurosaki, T., Nakabayashi, N., (1995) J. Biomed. Mater. Res., 29, p. 181; Ma, Y., Tang, Y., Billingham, N.C., Norman, C., Armes, S.P., Lewis, A.L., (2003) Biomacromolecules, 4, p. 864; Kojima, M., Ishihara, K., Watanabe, A., Nakabayashi, N., (1991) Biomaterials, 12, p. 121; Okano, T., Katayama, M., Shinohara, I., (1978) J. Appl. Polym. Sci., 22, p. 369; Lavasanifar, A., Samuel, J., Kwon, J.S., (2002) Adv. Drug Delivery Rev., 54, p. 169; Discher, D.E., Eisenberg, A., (2002) Science, 297, p. 967; Burke, S.E., Eisenberg, A., (2001) Langmuir, 17, p. 8341; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, p. 3661; Matyjaszewski, K., Xia, J., (2001) Chem. Rev., 101, p. 2921; Barner-Kowollik, C., Davis, T.P., Heuts, J.P.A., Stenzel, M.H., Vana, P., Whittaker, M., (2003) J. Polym. Sci., Part A: Polym. Chem., 47, p. 365; Li, Y., Armes, S.P., Jin, X., Zhu, S., (2003) Macromolecules, 36, p. 8268; Ma, Y., Tang, Y., Billingham, N.C., Armes, S.P., (2003) Biomacromolecules, 4, p. 864; Stenzel, M.H., Davis, T.P., (2003) Aust. J. Chem., 56, p. 1035; Donovan, M., Lowe, A.B., Sanford, T.A., McCormick, C.L., (2003) J. Polym. Sci., Part A: Polym. Chem., 41, p. 1262; Seo, Y., Li, Y., Nakaya, T., (1995) Macromol. Rep., A32, p. 999; Ishihara, K., Ueda, T., Nakabayashi, N., (1990) Polym. J. (Tokyo), 22, p. 355; Stenzel, M.H., Davis, T.P., Fane, A.G., (2003) J. Mater. Chem., 13, p. 2090; (1998) Chem. Abstr., 128, p. 115390. , WO 9801478 (1998), E. I. Du Pont de Nemours & Co., USA, invs.: T. P. Le, G. Moad, E. Rizzardo, S. H. Thang; Barner-Kowollik, C., Quinn, J.F., Morsley, D.R., Davis, T.P., (2001) J. Polym. Sci., Part A; Polym. Chem., 39, p. 1353; Vana, P., Davis, T.P., Barner-Kowollik, C., (2002) Macromol. Theory Simul., 11, p. 823; Rizzardo, E., Chiefari, J., Mayadunne, R.T.A., Moad, G., Tang, S.H., (2000) ACS Symp. Ser., 786, p. 278; Lowe, A.B., Billingham, N.C., Armes, S.P., (1999) Macromolecules, 32, p. 2141; Bütün, V., Billingham, N.C., Armes, S.P., (1998) J. Am. Chem. Soc., 120, p. 11818; Förster, S., Zisenis, M., Wenz, E., Antonietti, M., (1996) J. Chem. Phys., 104, p. 9956; Israelachvili, J.N., Mitchell, D.J., Ninham, B.W., (1976) J. Chem. Soc., Faraday Trans, 1, 72, p. 1525; Zhu, J., Lennox, R.B., Bruce, R., Eisenberg, A., (1991) Langmuir, 7, p. 1579; Niu, A., Liaw, D.-J., Sang, H.-C., Wu, C., (2000) Macromolecules, 33, p. 3492; Gnambodoe, M., Hamaide, T., Revillon, A., (1996) Polymer, 37, p. 603; Ravi, P., Wang, C., Tam, K.C., Gan, L.H., (2003) Macromolecules, 36, p. 173; Nakano, M., Deguchi, M., Matsumoto, K., Matsuoka, H., Yamaoka, H., (1999) Macromolecules, 32, p. 7437
Keywords: Biocompatibility, Diblock copolymers, Micelles, Poly(2-acryloyloxyethyl phosphorylcholine), RAFT polymerisation, Addition reactions, Chlorine containing polymers, Fourier transform infrared spectroscopy, Light scattering, Molecular weight, Nuclear magnetic resonance spectroscopy, Polyacrylates, Polymerization, Solvents, Toxicity, Amphiphilic block copolymers, FT NIR spectroscopy, Reversible addition fragmentation transfer (RAFT) polymerization, Block copolymers, 3 benzylsulfanylthiocarbonylsulfanylpropionic acid, acrylic acid derivative, copolymer, phosphorylcholine, poly(2 acryloyloxyethyl phosphorylcholine), poly(2 hydroxyethyl acrylate), poly(butyl acrylate), propionic acid derivative, solvent, unclassified drug, article, cell growth, cell line, chemical composition, infrared spectroscopy, micelle, nanotechnology, near infrared spectroscopy, reversible addition fragmentation transfer, synthesis, Biocompatible Materials, Chromatography, Gel, Indicators and Reagents, Kinetics, Models, Molecular, Molecular Conformation, Polymers, Spectroscopy, Fourier Transform Infrared
DOI: 10.1002/mabi.200300113
ISSN: 16165187
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 22 Sep 2016 04:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page