Poly(vinyl ester) star polymers via xanthate-mediated living radical polymerization: From poly(vinyl alcohol) to glycopolymer stars

Bernard, J., Favier, A., Zhang, L., Nilasaroya, A., Davis, T. P., Barner-Kowollik, C., & Stenzel, M. H. (2005) Poly(vinyl ester) star polymers via xanthate-mediated living radical polymerization: From poly(vinyl alcohol) to glycopolymer stars. Macromolecules, 38(13).

View at publisher


PolyCvinyl ester) stars have been synthesized via different macromolecular design via interchange of xanthate (MADIX)/reversible addition-fragmentation chain transfer (RAFT) polymerization methodologies. Two approaches were investigated. The first method involved attaching the xanthate functionality to the core via a nonfragmenting covalent bond (Z-group approach). The second approach involved attaching the xanthate functionality to the core via a fragmenting covalent bond (R-group approach). The R-group approach yielded well-defined poly(vinyl acetate), poly(vinyl pivalate), and poly-(vinyl neodecanoate) stars with narrow polydispersities (PDI ≤ 1.4). In contrast, the molecular weight distributions of poly(vinyl acetate) stars prepared using the Z-approach tended to broaden at moderate to high conversions. We attribute this broadening to steric congestion around the xanthate functionality, restricting the access of monomer to the C=S bonds. The R-group approach was also found to be superior for preparing precursor stars suitable for hydrolysis to poly(vinyl alcohol). Hydrolysis of stars generated by the Z-group approach resulted in destruction of the architecture, as the process also cleaved the xanthate linkage at the nexus of the arms and core. Preliminary experiments on using the R-group approach to mediate the star-polymerization of vinyl-functional glycomonomers demonstrated the possibility of generating complex glycopolymer architectures. However, some significant problems were observed, and this synthetic approach requires further optimization. © 2005 American Chemical Society.

Impact and interest:

140 citations in Scopus
132 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99100
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :133
Export Date: 5 September 2016
Correspondence Address: Stenzel, M.H.; Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; email: camd@unsw.edu.au
References: Le, T.P., Moad, G., Rizzardo, E., Thang, S.H., PCT Int. Appl. WO9801478 A1 19980115(1998) Chem. Abstr., 128, p. 115390; Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Jeffery, J., Le, T.P., Mayadunne, R.T.A., Thang, S.H., (1998) Macromolecules, 31, pp. 5559-5562; Destarac, M., Charmot, D., Franck, X., Zard, S.Z., (2000) Macromol. Rapid Commun., 21, pp. 1035-1039; Stenzel-Rosenbaum, M., Davis, T.P., Chen, V., Fane, A.G., (2001) J. Polym. Sci., Part A, 39, pp. 2777-2783; Mayadunne, R.T.A., Jeffery, J., Moad, G., Rizzardo, E., (2003) Macromolecules, 36, pp. 1505-1513; Stenzel, M.H., Davis, T.P., (2002) J. Polym. Sci., Part A, 40, pp. 4498-4512; Ming, C., Ghiggino, K.P., Launikonis, A., Mau, A.W.H., Rizzardo, E., Sasse, W.H.F., Thang, S.H., Wilson, G.J., (2003) J. Mater. Chem., 13, pp. 2696-2700; Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2004) Chem. Commun., 13, pp. 1546-1547; Dureault, A., Taton, D., Destarac, M., Leising, F., Gnanou, Y., (2004) Macromolecules, 37, pp. 5513-5519; Matyjaszewski, K., Wang, J.S., PCT Int. Appl. WO9630421 A1 19961063Ueda, J., Matsuyama, M., Kamigaito, M., Sawamoto, M., (1998) Macromolecules, 31, pp. 557-562; Angot, S., Murthy, K.S., Taton, D., Gnanou, Y., (1998) Macromolecules, 31, pp. 7218-7225; Hedrick, J.L., Trollsas, M., Hawker, C.J., Claesson, A.H., Heise, A., Miller, R.D., Mecerreyes, D., Dubois, P., (1998) Macromolecules, 31, pp. 8691-8705; Matyjaszewski, K., Xia, J., (2001) Chem. Rev., 101, pp. 2921-2990; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem. Rev., 101, pp. 3661-3688; Hawker, C.J., (1995) Angew. Chem., Int. Ed. Engl., 34, pp. 1456-1459; Robin, S., Guerret, O., Couturier, J.L., Gnanou, Y., (2002) Macromolecules, 35, pp. 2481-2486; Stenzel, M.H., Cummings, L., Roberts, G.E., Davis, T.P., Vana, P., Barner-Kowollik, C., (2003) Macromol. Chem. Phys., 204, pp. 1160-1168; Favier, A., Barner-Kowollik, C., Davis, T.P., Stenzel, M.H., (2004) Macromol. Chem. Phys., 205, pp. 925-936; Uhrich, K.E., Cannizarro, S.M., Langer, R.S., Shakesheff, K.M., (1999) Chem. Rev., 99, pp. 3181-3198; Orienti, I., Di Pietra, A., Luppi, B., Zecchi, V., (2000) Arch. Pharm. Pharm. Med. Chem., 333, pp. 421-424; Hassan, C.M., Peppas, N.A., (2000) Eur. J. Pharmacol. Biopharm., 49, pp. 161-165; Rump, A.F.E., Woschee, U., Theisohn, M., Fischbach, R., Heindel, W., Lackner, K., Klaus, W., (2002) Eur. J. Clin. Pharmacol., 58, pp. 459-465; Inoue, K., (2000) Prog. Polym. Sci., 25, pp. 453-571; Hadjichristidis, N., Pitsikalis, M., Pispas, S., Iatrou, H., (2001) Chem. Rev., 101, pp. 3747-3792; Haddleton, D.M., Edmonds, R., Heming, A.M., Kelly, E.J., Kukulj, D., (1999) New J. Chem., 23, pp. 477-479; Jesberger, M., Barner, L., Stenzel, M.H., Malmstrom, E., Davis, T.P., Barner-Kowollik, C., (2003) J. Polym. Sci., Part A, 41, pp. 3847-3861; Chaffey-Millar, H., Busch, M., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2005) Macromol. Theory Simul., 14, pp. 143-157; Albertin, L., Kohlert, C., Stenzel, M.H., Foster, J.L.R., Davis, T.P., (2004) Biomacromolecules, 5, pp. 255-260; Schaefgen, J.R., Flory, J., (1948) J. Am. Chem. Soc., 70, pp. 2709-2718; Yamada, K., Nakano, T., Okamoto, Y., (1998) Macromolecules, 31, pp. 7598-7605; Yamada, K., Nakano, T., Okamoto, Y., (2000) J. Polym. Sci., Part A, 38, pp. 220-228; Tokiwa, Y., Fan, H., Hiraguri, H., Kurane, R., Kitagawa, M., Shibatani, S., Maekawa, Y., (2000) Macromolecules, 33, pp. 1636-1639; Kitagawa, M., Raku, T., Shimakawa, H., Fan, H., Tokiwa, Y., (2002) Macromol. Biosci., 2, pp. 233-237
Keywords: Addition reactions, Chemical bonds, Free radical polymerization, Hydrolysis, Molecular weight, Synthesis (chemical), Viscosity measurement, Atom transfer radical polymerization (ATRP), Glycopolymer stars, Polydispersity, Vinyl esters, Polyvinyl acetates
DOI: 10.1021/ma050050u
ISSN: 00249297
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 22 Sep 2016 04:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page