Honeycomb-structured porous films from polypyrrole-containing block copolymers prepared via RAFT polymerization as a scaffold for cell growth

Beattie, D., Wong, K. H., Williams, C., Poole-Warren, L. A., Davis, T. P., Barner-Kowollik, C., & Stenzel, M. H. (2006) Honeycomb-structured porous films from polypyrrole-containing block copolymers prepared via RAFT polymerization as a scaffold for cell growth. Biomacromolecules, 7(4).

View at publisher

Abstract

Honeycomb-structured porous films were prepared using customized amphiphilic block copolymers, synthesized by RAFT polymerization. Pyrrole was templated along an amphiphilic block copolymer, composed of polystyrene and poly(acrylic acid). Subsequent oxidation of pyrrol to polypyrrole, resulted in the formation of a soluble polypyrrole-containing polymer. Gel permeation chromatography and dynamic light scattering studies confirmed the solubility of the resulting customized amphiphilic block copolymer, in both water and organic solvent, forming either micelles or inverse aggregates. Porous films with a hexagonal array of micron-sized pores were generated with the polymer, using the breath figures templating technique. The resulting films were found to be non-cytotoxic and hence suitable as scaffolds for tissue engineering. Initial fibroblast cell culture studies on these scaffolds demonstrated a dependency of cell attachment on the pore size of scaffolds. © 2006 American Chemical Society.

Impact and interest:

150 citations in Scopus
Search Google Scholar™
141 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99119
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :145
Export Date: 5 September 2016
CODEN: BOMAF
Correspondence Address: Stenzel, M.H.; Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering and Industrial Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; email: camd@unsw.edu.au
Chemicals/CAS: polyacrylic acid, 74350-43-9, 87003-46-1, 9003-01-4, 9003-04-7; polypyrrole, 30604-81-0; polystyrene, 9003-53-6; pyrrole, 109-97-7; water, 7732-18-5; Acrylic Resins; carbopol 940, 9003-01-4; Membranes, Artificial; Micelles; Polymers; polypyrrole, 30604-81-0; Polystyrenes; Pyrroles; Solvents; Water, 7732-18-5
References: Wallace, G.G., Kane-Maguire, L.A.P., (2002) Adv. Mater., 14, p. 953; Robinson, J.F., Mark, H.B., (2003) Conducting Polymers and Polymer Electrolytes from Biology to Photovoltaics, pp. 154-165. , Eds. ACS Symposium Series 832; The American Chemical Society: Washington, DC; Collier, J.H., Camp, J.P., Hudson, T.W., Schmidt, C.E., (2001) J. Biomed. Mater. Res., 50, p. 574; Kotwal, A., Schmidt, C.E., (2001) Biomaterials, 22, p. 1055; Lee, J.H., Jung, H.W., Kang, I., Lee, H.B., (1994) Biomaterials, 15, p. 705; Dalby, M.J., Riehle, M.O., Yarwood, S.J., Wilkinson, C.D.W., Curtis, A.S.G., (2003) Exp. Cell Res., 284, p. 274; Skotheim, T.A., Elsenbaumer, R.L., Reynolds, J.R., (1998) Handbook of Conducting Polymers, , Eds. 2nd ed.; Marcel Dekker, Inc.: New York; Joo, J., Lee, J.K., Hong, J.K., Baek, J.S., Lee, W.P., Epstein, A.J., Jang, K.S., Oh, E.J., (1998) Macromolecules, 31, p. 479; Shen, Y., Wan, M.J., (1997) Polym. Sci., Part A: Polym. Chem., 35, p. 3689; Song, K.T., Lee, J.Y., Kim, H.D., Kim, S.Y., Kim, C.Y., (2000) Synth. Met., 110, pp. 57-63; Bhattacharya, A., De, A., Das, S., (1996) Polymer, 37, p. 4375; Wang, J., Ge, D., Wang, S., (2003) Chem. Lett., 32, p. 528; Pringle, J.M., Efthimiadis, J., Howlett, P.C., Efthimiadis, J., MacFarlane, D.R., Chaplin, A.B., Hall, S.B., Forsyth, M., (2004) Polymer, 45, p. 1447; Malinauskas, A., (2001) Polymer, 42, p. 3597; Wallace, G.G., Spinks, G.M., Kane-Maguire, L.A.P., Teasdale, P.R., (2003) Conductive Electroactive Polymers Intelligent Materials Systems, pp. 51-119. , 2nd ed.; CRC Press LLC: Boca Raton, FL; Stenzel, M.H., (2002) Aust. J. Chem., 55, p. 239; Widawski, G., Rawieso, M., François, B., (1994) Nature (London), 369, p. 397; Song, L., Bly, R.K., Wilson, J.N., Bakbak, S., Park, J.O., Srinivasarao, M., Bunz, U.H.F., (2004) Adv. Mater., 16, p. 115; Le, T.P., Moad, G., Rizzardo, E., Thang, S.H., (1998), International Patent PCT WO 9801478Barner-Kowollik, C., Davis, T.P., Heuts, J.P.A., Stenzel, M.H., Vana, P., Whittaker, M., (2003) J. Polym. Sci., Part A: Polym. Chem., 41, p. 365; Perrier, S., Takolpuckdee, P., (2005) J. Polym. Sci., Part A: Polym. Chem., 43, p. 5347; Hales, M., Barner-Kowollik, C., Davis, T.P., Stenzel, M.H., (2004) Langmuir, 20, p. 10809; Arotcarena, M., Heise, B., Ishaya, S., Laschewsky, A., (2000) J. Am. Chem. Soc., 124, p. 3787; Stenzel, M.H., Barner-Kowollik, C., Davis, T.P., Dalton, H.M., (2004) Macromol. Biosci., 4, p. 445; Sumerlin, B.S., Lowe, A.B., Thomas, D.B., McCormick, C.L., (2003) Macromolecules, 36, p. 5982; Loiseau, J., Dörr, N., Suau, J.M., Egraz, J.B., Llauro, M.F., Ladaviere, C., Claverie, J.P., (2003) Macromolecules, 36, p. 3066; Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Jeffery, J., Lee, T.P.T., Mayadunne, R.T.A., Thang, S.T., (1998) Macromolecules, 31, p. 5559; Ladaviere, C., Dörr, N., Claverie, J.P., (2001) Macromolecules, 34, p. 5370; Stenzel, M.H., Davis, T.P., Fane, A.G., (2003) J. Mater. Chem., 13, p. 2090; Wong, K.H., Hernández-Guerrero, M., Granville, A.M., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., J. Porous Mater., , In press; Stenzel, M.H., Davis, T.P., (2002) J. Polym. Sci., Part A: Polym. Chem., 40, p. 4498; Charton, N., Feldermann, A., Theis, A., Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2004) J. Polym. Sci., Part A: Polym. Chem., 42, p. 5170; Hernández-Guerrero, M., Barner-Kowollik, C., Davis, T.P., Stenzel, M.H., (2005) Eur. Polym. J., 41, p. 2264; Joo, J., Lee, J.K., Baek, J.S., Kim, K.H., Oh, E.J., Epstein, W.J., (2001) Synth. Met., 117, p. 45; Shen, Y., Wan, M., (1997) J. Polym. Sci., Part A: Polym. Chem., 35, p. 3689; Song, M.K., Kim, Y.T., Kim, B.S., Kim, J., Char, K., Rhee, H.W., (2004) Synth. Met., 141, p. 315; Zhang, L., Eisenberg, A., (1999) Macromolecules, 32, p. 2239; Terreau, O., Bartels, C., Eisenberg, A., (2004) Langmuir, 20, p. 637; Zhang, W., Shi, L., An, Y., Wu, L., Gao, L., Liu, Z., Ma, R., He, B., (2004) Macromolecules, 37, p. 2924; Brandrup, J., Innergut, E.M., Grulke, E.A., (1999) Polymer Handbook, , 4th ed.; Wiley Interscience: New York; Karthaus, O., Maruyama, N., Cieren, X., Shimomura, M., Hasegawa, H., Hashimoto, T., (2000) Langmuir, 16, p. 6071; Rayleigh, (1911) Nature (London), 86, p. 416. , Lord; Barner-Kowollik, C., Dalton, H., Davis, T.P., Stenzel, M.H., (2003) Angew. Chem., Int. Ed., 42, p. 3664; Nishikawa, T., Nonomura, M., Arai, K., Hayashi, J., Sawadaishi, T., Nishiura, Y., Hara, M., Shimomura, M., (2003) Langmuir, 19, p. 6193; Yabu, H., Tanaka, M., Ijiro, K., Shimomura, M., (2003) Langmuir, 19, p. 6297; Böker, A., Lin, Y., Chiapperini, K., Horowitz, R., Thompson, M., Carreon, V., Xu, T., Russell, T.P., (2004) Nat. Mater., 3, p. 302; Yabu, H., Shimomura, M., (2005) Langmuir, 21, p. 3235; Haris, P.I., Tanaka, M., Takebayashi, M., Miyama, M., Nishida, J., Shimomura, M., (2004) Biomed. Mater. Eng., 14, p. 439; Nishida, J., Nishikawa, K., Nishimura, S.-I., Wada, S., Karino, T., Nishikawa, T., Ijiro, K., Shimomura, M., (2002) Polym. J., 34, p. 166; Nishikawa, T., Nishida, J., Ookura, R., Nishimura, S.-I., Wada, S., Karino, T., Shimomura, M., (1999) Mater. Sci. Eng., 8-9, p. 495; Stenzel, M.H., Davis, T.P., (2003) Aust. J. Chem., 56, p. 1035; Nygard, A., Barner-Kowollik, C., Davis, T.P., Stenzel, M.H., (2005) Aust. J. Chem., 58, p. 595
Keywords: Gel permeation chromatography, Light scattering, Oxidation, Polymerization, Polypyrroles, Porous materials, Solubility, Amphiphilic block copolymers, Dynamic light scattering, Honeycomb-structured porous films, Porous films, Block copolymers, amphophile, copolymer, organic solvent, polyacrylic acid, polypyrrole, polystyrene, pyrrole, water, animal cell, article, cell adhesion, cell growth, chemical structure, controlled study, cytotoxicity test, differential scanning calorimetry, fibroblast culture, gravimetry, infrared spectroscopy, mathematical computing, micelle, mouse, nonhuman, porosity, priority journal, tissue engineering, transmission electron microscopy, Acrylic Resins, Adsorption, Animals, Cell Proliferation, Cells, Cultured, Fibroblasts, Membranes, Artificial, Mice, Micelles, Molecular Structure, Oxidation-Reduction, Particle Size, Polymers, Polystyrenes, Pyrroles, Solvents, Temperature, Time Factors, Animalia
DOI: 10.1021/bm050858m
ISSN: 15257797
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 29 Sep 2016 05:39

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page