Using the reversible addition-fragmentation chain transfer process to synthesize core-crosslinked micelles

Zhang, L., Katapodi, K., Davis, T. P., Barner-Kowollik, C., & Stenzel, M. H. (2006) Using the reversible addition-fragmentation chain transfer process to synthesize core-crosslinked micelles. Journal of Polymer Science, Part A: Polymer Chemistry, 44(7).

View at publisher


Poly(2-hydroxyethyl acrylate)-poly(n-butyl acrylate) block copolymers were synthesized with the reversible addition-fragmentation chain transfer (RAFT) process. The block copolymers were synthesized successfully with either poly(2-hydroxyethyl acrylate) or poly(n-butyl acrylate) macro-RAFT agents. The resulting block copolymers had narrow molecular weight distributions (polydispersity index = 1.3-1.4). Copolymer self-aggregation in water yielded micelles, with the hydrodynamic diameter (Dh) values of the aggregates dependent on the length of both blocks according to Dh - NBA 1.17NHEA 0.57, where N BA is the number of repeating units of n-butyl acrylate and N HEA is the number of repeating units of 2-hydroxyethyl acrylate. The micelles were subsequently stabilized via chain extension of the block copolymer with a crosslinking agent. The successful chain extension in a micellar system was confirmed by an increase in the molecular weight, which was detected with membrane osmometry. The crosslinked particles showed noticeably different aggregation behavior in diverse solvent systems. The uncrosslinked micelles formed by the block copolymer (NHEA = 260, NBA = 75) displayed a definite critical micelle concentration at 5.4 × 10 -4 g L-1 in aqueous solutions. However, upon crosslinking, the critical micelle concentration transition became obscure. © 2006 Wiley Periodicals, Inc.

Impact and interest:

59 citations in Scopus
Search Google Scholar™
55 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99139
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :59
Export Date: 5 September 2016
Correspondence Address: Stenzel, M.H.; Centre for Advanced Macromolecular Design, School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; email:
References: Bader, H., Ringsdorf, H., Schmidt, B., (1984) Angew Makromol Chem, 123, p. 457; Lvasnifar, A., Samuel, J., Kwon, G.S., (2002) Adv Drug Delivery Rev, 54, p. 169; Kataoka, K., Kwon, G.S., Yokoyama, M., Okano, T., Sakurai, Y., (1993) J Controlled Release, 24, p. 119; Yokoyama, M., (1992) Crit Rev Ther Drug Carrier Syst, 9, p. 213; Kataoka, K., (1994) J Macromol Sci Pure Appl Chem, 11, p. 1759; Abraham, S., Ha, C.-S., Kim, L., (2005) J Polym Sci Part A: Polym Chem, 43, p. 6367; Jia, Z., Zhou, Y., Yan, D., (2005) J Polym Sci Part A: Polym Chem, 43, p. 6534; Aubrecht, K.B., Grubbs, R.B., (2005) J Polym Sci Part A: Polym Chem, 43, p. 5156; Chang, Y., Powell, E.S., Allcock, H.R., (2005) J Polym Sci Part A: Polym Chem, 43, p. 2912; Topouza, D., Orfanou, K., Pispas, S., (2004) J Polym Sci Part A: Polym Chem, 42, p. 6230; Ayres, L., Hans, P., Adams, J., Löwik, D.W.P.M., Van Hest, J.C.M., (2005) J Polym Sci Part A: Polym Chem, 43, p. 6355; Rösler, A., Vandermeulen, G.W.M., Klok, H.A., (2001) Adv Drug Delivery Rev, 53, p. 95; Iijima, M., Nagasaki, Y., Okada, T., Kato, M., Kataoka, K., (1999) Macromolecules, 32, p. 1140; Emoto, K., Nagasaki, Y., Kataoka, K., (1999) Langmuir, 15, p. 5212; Won, Y.Y., Davis, H.T., Bates, F.S., (1999) Science, 283, p. 960; Thurmond, K.B., Kowalewski, T., Wooley, K.L., (1996) J Am Chem Soc, 118, p. 7239; Huang, H., Remsen, E.E., Kowalewski, T., Wooley, K.L., (1999) J Am Chem Soc, 121, p. 3805; Hales, M., Barner-Kowollik, C., Davis, T.P., Stenzel, M.H., (2004) Langmuir, 20, p. 10809; Perrier, S., Takolpuckdee, P., (2005) J Polym Sci Part A: Polym Chem, 43, p. 5347; Mayadunne, R.T.A., Rizzardo, E., Chiefari, J., Chong, Y.K., Moad, G., Thang, S.H., (1999) Macromolecules, 32, p. 6977; Stenzel, M.H., Barner-Kowollik, C., Davis, T.P., Dalton, H.M., (2004) Macromol Biosci, 4, p. 445; Donovan, M., Lowe, A.B., Sanford, T.A., McCormick, C.L., (2003) J Polym Sci Part A: Polym Chem, 41, p. 1262; Albertin, L., Stenzel, M.H., Barner-Kowollik, C., Foster, L.J.R., Davis, T.P., (2004) Macromolecules, 37, p. 7530; Arotcarena, M., Heise, B., Ishaya, S., Laschewsky, A., (2000) J Am Chem Soc, 124, p. 3787; Liu, B., Perrier, S., (2005) J Polym Sci Part A: Polym Chem, 43, p. 3643; Sumerlin, B.S., Lowe, A.B., Thomas, D.B., Convertine, A.J., Donovan, M.S., McCormick, C.L., (2004) J Polym Sci Part A: Polym Chem, 42, p. 1724; Stenzel, M.H., Davis, T.P., Fane, A.G., (2003) J Mater Chem, 13, p. 2090; Theis, A., Feldermann, A., Charton, N., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2005) Polymer, 46, p. 6797; Bian, K., Cunningham, M.F., (2005) Macromolecules, 38, p. 695; Grubišić-Gallot, Z., Gallot, Y., (1994) Macromol Chem Phys, 195, p. 781; Riess, G., (2003) Prog Polym Sci, 28, p. 1107; Mpiri, M., Mountrichas, G., Pispas, S., (2005) Macromolecules, 38, p. 940; Yoshida, E., Ohta, M., Teradu, Y., (2005) Polym Adv Technol, 16, p. 183; Zhang, Y., Jiang, M., Zhao, J., Zhao, J., Chen, D., (2004) Macromolecules, 37, p. 1537; Matsumoto, K., Hasegawa, H., Matsuoka, H., (2004) Tetrahedron, 60, p. 7197; Xu, P., Tang, H., Li, S., Ren, J., Van Kirk, E., Murdoch, W.J., Radosz, M., Shen, Y., (2004) Biomacromolecules, 5, p. 1736; Tan, J.F., Ravi, P., Too, H.P., Hatton, T.A., Tam, K.C., (2005) Biomacromolecules, 6, p. 498; Tan, B., Grijpma, D.W., Nabuurs, T., Feijen, J., (2005) Polymer, 46, p. 1347; Bendejacq, D.D., Ponsinet, V., Joanicot, M., (2005) Langmuir, 21, p. 1712; Huggins, M.L., (1942) J Am Chem Soc, 64, p. 2716; Kelarakis, A., Havredaki, V., Booth, C., Nace, V.M., (2002) Macromolecules, 35, p. 5591; Soni, S.S., Sastry, N.V., Patra, A.K., Joshi, J.V., Goyal, P.S., (2002) J Phys Chem B, 106, p. 13069; Ohrn, O.E., (1955) J Polym Sci, 17, p. 137
Keywords: Block copolymers, Crosslinking, Micelles, Reversible addition fragmentation chain transfer (RAFT), Concentration (process), Hydrodynamics, Molecular weight, Osmosis, Polyesters, Solutions, Core-crosslinked micelles, Membrane osmometry, Narrow molecular weight distributions
DOI: 10.1002/pola.21328
ISSN: 0887624X
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 05 Oct 2016 05:48

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page