Depolymerization kinetics of di(4-tert-butyl cyclohexyl) itaconate and Mark-Houwink-Kuhn-Sakurada parameters of di(4-tert- butyl cyclohexyl) itaconate and di-n-butyl itaconate

Szablan, Z., Huaming, M., Adler, M., Stenzel, M. H., Davis, T. P., & Barner-Kowollik, C. (2007) Depolymerization kinetics of di(4-tert-butyl cyclohexyl) itaconate and Mark-Houwink-Kuhn-Sakurada parameters of di(4-tert- butyl cyclohexyl) itaconate and di-n-butyl itaconate. Journal of Polymer Science, Part A: Polymer Chemistry, 45(10).

View at publisher


Multipulse pulsed laser polymerization coupled with size exclusion chromatography (MP-PLP-SEC) has been employed to study the depropagation kinetics of the sterically demanding 1,1-disubstituted monomer di(4-tert-butylcyclohexyl) itaconate (DBCHI). The effective rate coefficient of propagation, kp eff, was determined for a solution of monomer in anisole at concentrations, cM 0, 0.72 and 0.88 mol L-1 in the temperature range 0 ≤ T ≤ 70°C. The resulting Arrhenius plot (i.e., ln kp eff vs. 1/RT) displayed a subtle curvature in the higher temperature regime and was analyzed in the linear part to yield the activation parameters of the forward reaction. In the temperature region where no depropagation was observed (0 ≤ T ≤ 50°C), the following Arrhenius parameters for kp were obtained (DBCHI, Ep = 35.5 ± 1.2 kJ mol-1, ln Ap = 14.8 ± 0.5 L mol-1 s-1). In addition, the k p eff data was analyzed in the depropagatation regime for DBCHI, resulting in estimates for the associated entropy (-ΔS = 150 J mol-1 K-1) of polymerization. With decreasing monomer concentration and increasing temperature, it is increasingly more difficult to obtain well structured molecular weight distributions. The Mark-Houwink-Kuhn- Sakurada (MHKS) parameters for di-n-butyl itaconate (DBI) and DBCHI were determined using a triple detection GPC system incorporating online viscometry and multi-angle laser light scattering in THF at 40°C. The MHKS for poly-DBI and poly-DBCHI in the molecular weight range 35-256 kDa and 36.5-250 kDa, respectively, were determined to be KDBI = 24.9 (103 mL g-1), αDBI = 0.58, KDBCHI = 12.8 (10 3 mL g-1), and αDBCHI = 0.63. © 2006 Wiley Periodicals, Inc.

Impact and interest:

6 citations in Scopus
Search Google Scholar™
7 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99159
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :6 Export Date: 5 September 2016 CODEN: JPACE Correspondence Address: Barner-Kowollik, C.; Centre for Advanced Macromolecular Design, School of Chemical Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; email: References: Popovic, I.G., Beuermann, S., Buback, M., (2001) Proceedings of the 3rd IUPAC-Sponsored Symposium on Free Radical Polymerization: Kinetics and Mechanism; Szablan, Z., Stenzel, M.H., Davis, T.P., Barner, L., Barner-Kowollik, C., (2005) Macromolecules, 38, p. 5944; Vana, P., Yee, L.H., Barner-Kowollik, C., Heuts, J.P.A., Davis, T.P., (2002) Macromolecules, 35, p. 1651; Vana, P., Yee, L.H., Davis, T.P., (2002) Macromolecules, 35, p. 3008; Yee, L.H., Coote, M.L., Chaplin, R.P., Davis, T.P., (2000) J Polym Sci Polym Chem, 38, p. 2192; Matsumoto, A., Sano, Y., Yoshioka, M., Otsu, T., (1996) J Polym Sci Polym Chem, 34, pp. 291-299; Kobatake, S., Yamada, B., (1997) Macromol Chem Phys, 198, p. 2825; Kobatake, S., Yamada, B., (1995) Macromolecules, 28, p. 4047; Kobatake, S., Yamada, B., (1996) J Polym Sci Polym Chem, 34, p. 95; Matsumoto, A., Yamagishi, K., Otsu, T., (1995) Eur Polym Mater, 31, p. 121; Otsu, T., Minai, H., Toyoda, N., Yasuhara, T., (1985) Makromol Chem, 12, p. 133; Szablan, Z., Ah Toy, A., Davis, T.P., Hao, X., Stenzel, M.H., Barner-Kowollik, C., (2004) J Polym Sci Polym Chem, 42, p. 2432; Szablan, Z., Ah Toy, A., Terrenoire, A., Davis, T.P., Stenzel, M.H., Müller, A.H.E., Barner-Kowollik, C., (2006) J Polym Sci Polym Chem, 44, p. 3692; Fernandez-Garcia, M., Fernandez-Sanz, M., Luis de la Fuente, J., Madruga, E.L., (2001) Macromol Chem Phys, 202, p. 1213; Hirano, T., Takeyoshi, R., Seno, M., Sato, T., (2002) J Polym Sci Polym Chem, 40, p. 2415; Aleksieva, K., Ancev, A., Koseva, S., Cvetkovska, M., Nedkov, E., (2004) e-Polymers, p. 059; Dainton, F. S.; Ivin, K. J. Nature 1948, 162, 705Prasath, R.A., Ramakrishnan, S., (2005) J Polym Sci Polym Chem, 43, p. 3257; Olaj, O.F., Bitai, I., Hinkelmann, F., (1987) Makromol Chem, 188, p. 1689; Buback, M., Gilbert, R.G., Hutchinson, R.A., Klumperman, B., Kuchta, F.-D., Manders, B.G., O'Driscoll, K.F., Schweer, J., (1995) Macromol Chem Phys, 196, p. 3267; Hutchinson, R.A., Paquet, D.A., Beuermann, S., McMinn, J., (1998) Ind Eng Chem Res, 37, p. 3567; Kilroe, J.G., Weale, K.E., (1960) J Chem Soc, p. 3849; Kukulj, D., Davis, T.P., (1998) Macromolecules, 31, p. 5668; Vana, P., Davis, T.P., Barner-Kowollik, C., (2002) Macromol Rapid Commun, 23, p. 952; Feldermann, A., Stenzel, M.H., Davis, T.P., Vana, P., Barner-Kowollik, C., (2004) Macromolecules, 37, p. 2404; Theis, A., Feldermann, A., Charton, N., Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2005) Macromolecules, 38, p. 2595; The term ceiling temperature, Tc, does not seem to be universally defined. Since the Tc is associated with the monomer concentration for thermodynamic reasons, there seems to be some confusion with regard to the monomer concentrations for which Tc should be reported. While some studies reference Tc with regard to the bulk monomer concentrations, others use a one molar monomer solution as reference state. The present study uses a 0.88 M monomer concentration as reference when discussing the ceiling temperature of DBCHIAllcock, H.R., Lampe, F.W., Mark, J.E., (2003) Contemporary Polymer Chemistry, p. 394. , 3rd ed, Pearson; Buback, M., Egorov, M., Junkers, T., Panchenko, E., (2005) Macromol Chem Phys, 206, p. 333; Sato, T., Morita, N., Tanaka, H., Ota, T., (1989) J Polym Sci Polym Chem, 27, p. 2497; Madruga, E.L., Fernandez-Garcia, M., (1994) Polymer, 35, p. 4437; γ-irradiation was used to generate high molecular weight polymer as a low radical flux aids in the formation of such material. See for example ref. Feldermann, A, Coote, M. L, Stenzel, M. H, Davis, T. P, Barner-Kowollik, C. J Am Chem Soc 2004, 126, 15915Strazielle, C., Benoit, H., Vogl, O., (1978) Eur Polym Mater, 14, p. 331; The narrow polystyrene standards used in the calibration were concurrently automatically measured on-line for intrinsic viscosity and added to the calibration curve together with the peak maximum. An additional fine-tuning was conducted with a broad polystyrene standard (Mw, 280,000) so that the inter-detector delay in the method were shifted until the MHUS Parameters for this broad standard were equal to literature valuesThe Fact*dn/dc method in the PSS WinGPC Unity software package was chosen as the method of choice in the determination of the MW,LS and MW,VISCO results to eliminate systematic error due to the online determination of dn/dc in the light scattering module utilizing the Fact*conc. method. See WinGPC Unity Manual 2004, PSS Polymer Standards Service GmbHGargallo, L., Opazo, A., Leiva, A., Radic, D., (1998) Polymer, pp. 39-2069; Velickovic, J., Vasovic, S., (1972) Makromol Chem, 153, p. 207; Velickovic, J., Coseva, S., Fort, R.J., (1975) Eur Polym Mater, 11, p. 377; Schaefgen, J. R.; Flory, P. J. J Am Chem Soc 1948, 70, 2709Burchard, W., (1999) Adv Polym Sci, 143, p. 114; Velickovic, J., Filipovic, J., (1984) Makromol Chem, 185, p. 5698; Busfield, W. K. Polymer Handbook, 3rd ed.; Brandrup, J.; Immergut, E. H., Eds.; Wiley-Interscience: New York, 1989; p VII, 25Norisuye, T., (1993) Prog Polym Sci, 18, p. 543; Sperling, L.H., (1992) Introduction to Physical Polymer Chemistry, p. 105. , 2nd ed, Wiley-Interscience: New York; Berry, G.C., Casassa, E.F., (1970) J Polym Sci Part D: Macromol Rev, 4, p. 1; Matsumoto, A., Nakagawa, E., (1999) Eur Polym Mater, 35, p. 2107; Tanaka, K., Yamada, B., Fellows, C.M., Gilbert, R.G., Davis, T.P., Yee, L.H., Smith, G.B., Russell, G.T., (2001) J Polym Sci Part A: Polym Chem, 39, p. 3902; Zammit, M.D., Coote, M.L., Davis, T.P., Willett, G.D., (1998) Macromolecules, 31, p. 955; Sato, T., Nakamura, H., Tanaka, H., Ota, T., (1991) Makromol Chem, 192, p. 2659; Seabrook, S.A., Tonge, M.P., Gilbert, R.G., (2005) J Polym Sci Part A: Polym Chem, 43, p. 1357; Barner-Kowollik, C., Vana, P., Davis, T.P., (2002) Handbook of Radical Polymerization, p. 187. , Davis, T. P, Matyjaszewski, K, Eds, Wiley-Interscience: New York; Cook, R.E., Dainton, F.S., Ivin, K.J., (1958) J Polym Sci, 29, p. 549
Keywords: Activation energy, Depropagation kinetics, Effective propagation rate coefficients, Itaconates, Kinetics (polym.) Mark-Houwink-Kuhn-Sakurada parameters, Multipulse pulsed laser polymerization - size exclusion chromatography (MP-PLP-SEC), Depolymerization, Molecular weight, Pulsed laser applications, Rate constants, Size exclusion chromatography, Multipulse pulsed laser polymerization, Organic polymers
DOI: 10.1002/pola.21957
ISSN: 0887624X
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 12 Oct 2016 04:32

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page