Honeycomb structured porous films from amphiphilic block copolymers prepared via RAFT polymerization

Wong, K. H., Davis, T. P., Barner-Kowollik, C., & Stenzel, M. H. (2007) Honeycomb structured porous films from amphiphilic block copolymers prepared via RAFT polymerization. Polymer, 48(17).

View at publisher

Abstract

The synthesis of polystyrene-block-poly(N,N-dimethylacrylamide) (PS-b-PDMA) via RAFT polymerization was investigated in detail. Two different RAFT agents - benzyl dithiobenzoate and 3-(benzylsulfanylthiocarbonylsufanyl) propionic acid, were employed to prepare polystyrene macroRAFT agents with molecular weights varying between 3000 g mol-1 and 62,000 g mol-1 and polydispersities between 1.1 and 1.4. Chain extensions with N,N-dimethylacrylamide (DMA) were carried out using a constant monomer to RAFT agent concentration ([DMA]/[RAFT] = 500), to compare the rate of polymerization in dependency of the polystyrene chain length. A decreasing rate of polymerization with increasing block length was observed. Depending on the sizes of the first block and type of RAFT agents used, chain extension polymerization with DMA was found to be incomplete, leading to significant low molecular weight tailing in the GPC analyses. Block copolymers prepared using 3-(benzylsulfanylthiocarbonylsufanyl) propionic acid, followed the expected molecular weight evolutions with polydispersity indices of 1.2-1.4. In contrast, block copolymers using benzyl dithiobenzoate clearly showed bimodal molecular weight distributions, especially when the longest PS macroRAFT agent with a molecular weight of 38,000 g mol-1 was employed. These amphiphilic block copolymers were used to fabricate honeycomb structured porous films using the breath figure technique. The regularity of the film was considerably influenced by the humidity of the environment, which could be controlled by the rate of the airflow or the humidity in the casting chamber. The interaction between the hydrophilic block copolymer and the humidity was found responsible for the delicate equilibrium during the casting process, which prevented high pores regularity at very low (below 50%) and at elevated (above 80%) humidity. The interactions of the hydrophilic block with the humidity were observed to superimpose an additional nano-scaled order onto the hexagonal micron-sized porous array. Pores, which are created by encapsulation of water droplets, were found to be more hydrophilic than the surface. Confocal microscopy studies were employed to locate hydrophilic blocks within the film using a fluorescence labeled PDMA polymer. Crown Copyright © 2007.

Impact and interest:

91 citations in Scopus
Search Google Scholar™
86 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99163
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :89
Export Date: 5 September 2016
CODEN: POLMA
Correspondence Address: Stenzel, M.H.; Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; email: camd@unsw.edu.au
References: Widawski, G., Rawieso, M., François, B., (1994) Nature, 369, pp. 387-389; Stenzel, M.H., (2002) Aust J Chem, 55, pp. 239-243; Stenzel, M.H., Barner-Kowollik, C., Davis, T.P., (2006) J Polym Sci Part A Polym Chem, 44, pp. 2363-2375; Bunz, U.H.F., (2006) Adv Mater, 18, pp. 973-989; Yabu, H., Shimomura, M., (2005) Chem Mater, 17, p. 5231; Srinivasarao, M., Collings, D., Philips, A., Patel, S., (2001) Science, 292, pp. 79-83; Hernández-Guerrero, M., Barner-Kowollik, C., Davis, T.P., Stenzel, M.H., (2005) Eur Polym J, 41, pp. 2264-2277; Jenekhe, S.A., Chen, X., (1998) Science, 279, pp. 1903-1907; Song, L., Bly, R.K., Wilson, J.N., Bakbak, S., Park, J.O., Srinivasarao, M., (2004) Adv Mater, 16, pp. 115-118; Erdogan, B., Song, L.L., Wilson, J.N., Park, J.O., Srinivasarao, M., Bunz, U.H.F., (2004) J Am Chem Soc, 126, pp. 3678-3679; Wong, K.H., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2006) Aust J Chem, 59, pp. 539-543; Yabu, H., Tanaka, M., IJiro, K., Shimomura, M., (2003) Langmuir, 19, pp. 6297-6300; Barner-Kowollik, C., Dalton, H., Davis, T.P., Stenzel, M.H., (2003) Angew Chem Int Ed, 42, pp. 3664-3668; Hao, X., Stenzel, M.H., Barner-Kowollik, C., Davis, T.P., Evans, E., (2004) Polymer, 45, pp. 7401-7415; Englert, B.C., Scholz, S., Leech, P.J., Srinivasarao, M., Bunz, U.H.F., (2005) Chem Eur J, 11, pp. 995-1000; Nishikawa, T., Nonomura, M., Arai, K., Hayashi, J., Sawadaishi, T., Nishiura, Y., (2003) Langmuir, 19, pp. 6193-6201; Karthaus, O., Maruyama, N., Cieren, X., Shimomura, M., Hasegawa, H., Hashimoto, T., (2000) Langmuir, 16, pp. 6071-6076; Karikari, A.S., Williams, S.R., Heisey, C.L., Rawlett, A.M., Long, T.E., (2006) Langmuir, 22, pp. 9687-9693; Stenzel, M.H., Davis, T.P., (2003) Aust J Chem, 56, pp. 1035-1038; Nygard, A., Barner-Kowollik, C., Davis, T.P., Stenzel, M.H., (2005) Aust J Chem, 58, pp. 595-599; Perrier, S., Takolpuckdee, P., (2005) J Polym Sci Part A Polym Chem, 43, pp. 5347-5393; Barner-Kowollik, C., Davis, T.P., Heuts, J.P.A., Stenzel, M.H., Vana, P., Whittaker, M., (2003) J Polym Sci Part A Polym Chem, 41, pp. 365-375; Moad, G., Rizzardo, E., Thang, S.H., (2005) Aust J Chem, 58, pp. 379-410; Yusa, S., Shimada, Y., Mitsukami, Y., Yamamoto, T., Morishima, Y., (2003) Macromolecules, 36, pp. 4208-4215; Arotcarena, M., Heise, B., Ishaya, S., Laschewsky, A., (2002) J Am Chem Soc, 124, pp. 3787-3793; Stenzel, M.H., Barner-Kowollik, C., Davis, T.P., Dalton, H.M., (2004) Macromol Biosci, 4, pp. 445-453; Save, M., Manguian, M., Chassenieux, C., Charleux, B., (2005) Macromolecules, 38, pp. 280-289; Garnier, S., Laschewsky, A., (2005) Macromolecules, 38, pp. 7580-7592; Mertoglu, M., Garnier, S., Laschewsky, A., Skrabania, K., Storsberg, J., (2005) Polymer, 46, pp. 7726-7740; Convertine, A.J., Lokitz, B.S., Vasileva, Y., Myrick, L.J., Scales, C.W., Lowe, A.B., (2006) Macromolecules, 39, pp. 1724-1730; Wong, K.H., Hernández-Guerrero, M., Granville, A.M., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2006) J Porous Mater, 13, pp. 213-223; Angus, S.D., Davis, T.P., (2002) Langmuir, 18, p. 9547; Lord, H.T., Quinn, J.F., Angus, S.D., Whittaker, M.R., Stenzel, M.H., Davis, T.P., (2003) J Mater Chem, 13, p. 2819; Feldermann, A., Coote, M.L., Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2004) J Am Chem Soc, 126, pp. 15915-15923; Xu, J., He, J., Fan, D., Tang, W., Yang, Y., (2006) Macromolecules, 39, pp. 3753-3759; Quinn, J.F., Barner, L., Barner-Kowollik, C., Rizzardo, E., Davis, T.P., (2002) Macromolecules, 35, pp. 7620-7627; Albertin, L., Stenzel, M.H., Barner-Kowollik, C., Davis, T.P., (2006) Polymer, 47, pp. 1011-1019; Vana, P., Albertin, L., Davis, T.P., Barner, L., Barner-Kowollik, C., (2002) J Polym Sci Polym Chem, 40, pp. 4032-4037; Pai, T.S.C., Barner-Kowollik, C., Davis, T.P., Stenzel, M.H., (2004) Polymer, 45, pp. 4383-5392; Monteiro, M.J., (2005) J Polym Sci Part A Polym Chem, 43, pp. 5643-5651; Halperin, A., (1987) Macromolecules, 20, pp. 2943-2946; Chu, B., Zhou, Z., Wu, G., (1994) J Non-Cryst Solids, 172-174, pp. 1094-1102; Hilfiker, R., Chu, B., Xu, J., (1989) J Colloid Int Sci, 133, pp. 176-184; Vagberg, L.J.M., Cogan, K.A., Gast, A.P., (1991) Macromolecules, 24, pp. 1670-1677; Yabu, H., Hirai, Y., Shimomura, M., (2006) Langmuir, 22, pp. 9760-9764; Yabu, H., Shimomura, M., (2006) Langmuir, 22, pp. 4992-4997
Keywords: Amphiphilic block copolymer, Honeycomb, RAFT, Atmospheric humidity, Block copolymers, Honeycomb structures, Plastic films, Polymerization, Synthesis (chemical), Micron-sized porous array, Water droplets, Porous materials, block copolymer, encapsulation, film, fluorescence, humidity, hydrophilic property, molecular weight, monomer, polyacrylamide, polystyrene, porosity
DOI: 10.1016/j.polymer.2007.06.048
ISSN: 00323861
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 11 Oct 2016 05:22

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page