Living star polymer formation (RAFT) studied via electrospray ionization mass spectrometry

Chaffey-Millar, H., Hart-Smith, G., & Barner-Kowollik, C. (2008) Living star polymer formation (RAFT) studied via electrospray ionization mass spectrometry. Journal of Polymer Science, Part A: Polymer Chemistry, 46(5).

View at publisher


A mass spectrometry analysis has been performed on complex architecture polymeric material produced during reversible addition fragmentation chain transfer (RAFT) polymerizations yielding star polymers. Para-acetoxystyrene (AcOSty) has been polymerized at 60 °C, using azobisisobutyronitrile (AIBN) as the thermally decomposing initiator, in the presence of the R-group approach tetrafunctional RAFT agent (1,2,4,5-tetrakis-(2-phenyl-thioacetyl- sulfanylmethyl)-benzene). In addition to ideal star material, a variety of products unique to this mode of polymerization have been identified. These include star-star couples, stars terminated with initiator fragments, star-star couples terminated with initiator fragments and linear polymers, supporting the notion that these species are responsible for the structured molecular-weight distributions measured for these systems when analyzed via gel permeation chromatography. The analysis begins with a study of AcOSty polymerizing (i) in the absence of any mediating agent and (ii) in the presence of a monofunctional RAFT agent, revealing the mode of termination of propagating poly(AcOSty) radicals as combination and that some ionization biases exist among variants of poly (AcOSty). The interpretation of the mass spectrometry data has been aided by a novel kinetic model of star polymerizations, allowing the rationalization of experimental observations with theoretical expectations. © 2008 Wiley Periodicals, Inc.

Impact and interest:

25 citations in Scopus
Search Google Scholar™
21 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99173
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :25 Export Date: 5 September 2016 CODEN: JPACE Correspondence Address: Barner-Kowollik, C.; Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, University of New South Wales, NSW 2052, Australia; email: References: Goto, A., Fukuda, T., (2004) Prog Polym Sci, 29, p. 329. , See for example; Solomon, D.H., Rizzardo, E., (1986), U.S. Patent 4,581,429Georges, M.K., Veregin, P.M., Kazmaier, P.M., Hamer, G.K., (1993) Macromolecules, 26, p. 2987; Altintas, O., Hizal, G., Tunca, U., (2006) J Polym Sci Part A: Polym Chem, 44, p. 5699; Kato, M., Kamigaito, M., Sawamoto, M., Higashimura, T., (1994) Polym Prepr Jpn, 43, p. 1792; Wang, J.-S., Matyjaszewski, K., (1995) Macromolecules, 28, p. 7572; Wang, J.-S., Matyjaszewski, K., (1995) J Am Chem Soc, 117, p. 5614; Patten, T.E., Xia, J., Abernathy, T., Matyjaszewski, K., (1996) Science, 272, p. 866; Le, T.P., Moad, G., Rizzardo, E., Thang, S.H., (1998), WO Patent 9,801,478Moad, G., Rizzardo, E., Thang, S.H., (2006) Aust J Chem, 59, p. 669; Zhang, L., Katapodi, K., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2006) J Polym Sci Part A: Polym Chem, 44, p. 2177; Rizzardo, E., Chiefari, J., Chong, B.Y.K., Ercole, F., Kristina, J., Jeffery, J., Le, T.P.T., Tang, S.H., (1999) Macromol Symp, 143, p. 291; Mayadunne, R.T.A., Jeffery, J., Moad, G., Rizzardo, E., (2003) Macromolecules, 36, p. 1505; Chaffey-Millar, H., Busch, M., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2005) Macromol Theory Simul, 14, p. 143; Chaffey-Millar, H., Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2005) Polym Prepr, 4, p. 299; Chaffey-Millar, H., Stenzel, M.H., Davis, T.P., Coote, M.L., Barner-Kowollik, C., (2006) Macromolecules, 39, p. 6406; Hanton, S.D., (2001) Chem Rev, 101, p. 527; Barner-Kowollik, C., Davis, T.P., Stenzel, M.H., (2004) Polymer, 45, p. 7791; Jackson, C.A., Simonsick, W., (1997) J Curr Opin Solid State Mater Sci, 2, p. 661; Jagtap, R.N., Ambre, A.H., (2005) Bull Mater Sci, 28, p. 515; Peacock, P.M., McEwen, C.N., (2006) Anal Chem, 78, p. 3957; Lovestead, T., Hart-Smith, G., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromolecules, 40, p. 4142; Hart-Smith, G., Lovestead, T., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Biomacromolecules, 8, p. 2404; Buback, M., Frauendorf, H., Günzler, F., Vana, P., (2007) J Polym Sci Part A: Poly Chem, 45, p. 2453; Buback, M., Frauendorf, H., Vana, P., (2004) J Polym Sci Part A: Poly Chem, 42, p. 4266; Bennet, F., Lovestead, T.M., Barker, P.J., Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2007) Macromol Rapid Commun, 28, p. 1593; Jasieczek, C.B., Buzy, A., Haddleton, D.M., Jennings, K.R., Rapid Commun (1996) Mass Spectrosc, 10, p. 509; Deery, M.J., Jennings, K.R., Jasieczek, C.B., Haddleton, D.M., Jackson, A.T., Yates, H.T., Scrivens, J.H., Rapid Commun (1997) Mass Spectrosc, 11, p. 57; Gründling, T., Hart-Smith, G., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromolecules, , in press; Beyou, E., Chaumont, P., Chauvin, F., Devaux, C., Zydowicz, N., (1998) Macromolecules, 31, p. 6828; Dourges, M.A., Charleaux, B., Vairon, J.P., Blais, J.C., Bolbach, G., Tabet, J.C., (1999) Macromolecules, 32, p. 2495; Schilli, C., Lanzendörfer, M.G., Müller, A.H.E., (2002) Macromolecules, 35, p. 6819; Schulte, T., Siegenthaler, K.O., Luftmann, H., Letzel, M., Studer, A., (2005) Macromolecules, 38, p. 6833; Li, N., Cho, A.S., Broadbelt, L.J., Hutchinson, R.A., (2006) Macromol Chem Phys, 207, p. 1429; Buback, M., Gilbert, R.G., Hutchinson, R.A., Klumpermann, B., Kuchta, E.-D., Manders, B.G., O'Driscoll, K.F., Schweer, J., (1995) Macromol Chem Phys, 196, p. 3267; Barner-Kowollik, C., Buback, M., Charleux, B., Coote, M.L., Drache, M., Fukuda, T., Goto, A., Tonge, M.P., (2006) J Polym Sci Part A: Polym Chem, 44, p. 5809; Quinn, J.F., Rizzardo, E., Davis, T.P., (2001) Chem Commun, 11, p. 1044; In this context, a major product might be a star, a star-star couple or an initiator terminated star, and must have a high abundance. Precisely which of these are deemed to be major depends on the region of the mass spectrum, which is of interest. For instance, certain spectral regions in a given mass spectrum might have ideal stars as the most abundant well known peak whilst for other spectral regions this might be star-star couplesCoote, M.L., Izgorodina, E.I., Krenske, E.H., Busch, M., Barner-Kowollik, C., (2006) Macromol Rapid Commun, 27, p. 1015; Wulkow, M., (1996) Macromol Theory Simul, 5, p. 393; Wang, A.R., Zhu, S., (2003) J Polym Sci Part A: Polym Chem, 41, p. 1553. , See for example; Busch, M., (2001) Macromol Theory Simul, 10, p. 408. , See for example; Goh, Y.-K.; Monteiro, M. J. Macromolecules 2006, 39, 4966Wulkow, M., Busch, M., Davis, T.P., Barner-Kowollik, C., (2004) J Polym Sci Part A: Polym Chem, 42, p. 1441; Barner-Kowollik, C., Buback, M., Egorov, M., Fukuda, T., Goto, A., Olaj, O.F., Russell, G.T., Zetterlund, P.B., (2005) Prog Polym Sci, 30, p. 605; Vana, P., Davis, T.P., Barner-Kowollik, C., (2002) Macromol Rapid Commun, 23, p. 952; Feldermann, A., Stenzel, H.H., Davis, T.P., Vana, P., Barner-Kowollik, C., (2004) Macromolecules, 37, p. 2404; Buback, M., Huckestein, B., Kuchta, F., Russell, G., Schmid, E., (1994) Macromol Chem Phys, 195, p. 2117; Vana, P., Davis, T.P., Barner-Kowollik, C., (2002) Macromol Theory Simul, 11, p. 823; Zammit, M.D., Davis, T.P., Haddleton, D.M., Suddaby, K.G., (1997) Macromolecules, 30, p. 1915; Chugaev, L. Ber 1899, 32, 3332Zhou, G., Harruna, I.I., (2007) Anal Chem, 79, p. 2722; Chong, B., Moad, G., Rizzardo, E., Skidmore, M., Thang, S.H., (2006) Aust J Chem, 59, p. 755; Vana, P., Albertin, L., Barner, L., Davis, T.P., Barner-Kowollik, C., (2002) J Polym Sci Part A: Polym Chem, 40, p. 4032; In a mass spectrum, peaks labeled as nonrepeating have been found to occur only once, that is, not at periodically spaced m/z intervals of 162.07 Da, the mass of AcOSty monomer. Consequently, these peaks are unlikely to correspond to poly(AcOSty) material but rather are deemed to be impurities existing within the sample. These peaks typically disappear upon repeating the mass spectrometric analysis. 56. The normalized experimental noise was estimated by hand-picking the apex of a representative peak in a region that contained only a background signal and comparing this abundance value with that of ideal starsUR -
Keywords: Computer modeling, Kinetics (polym.), Mass spectrometry, Reversible addition fragmentation chain transfer (RAFT), Star polymers, Addition reactions, Electrospray ionization, Gel permeation chromatography, Kinetics, Molecular weight distribution, Polymerization, Linear polymers, Organic polymers
DOI: 10.1002/pola.22562
ISSN: 0887624X
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 10 Oct 2016 02:33

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page