Access to cyclic polystyrenes via a combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry

Goldmann, A. S., Quémener, D., Millard, P. E., Davis, T. P., Stenzel, M. H., Barner-Kowollik, C., & Müller, A. H. E. (2008) Access to cyclic polystyrenes via a combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry. Polymer, 49(9).

View at publisher


The coupling of the reversible addition fragmentation chain transfer (RAFT) polymerization technique with the copper-catalyzed Huisgen 1,3-dipolar cycloaddition ("click chemistry") as a simple and effective way to generate polystyrene (PS) macrocycles is presented. The novel strategy entails the synthesis of linear PS backbones followed by endgroup modification to facilitate click chemistry for the formation of ring shaped polymers. An azido group modified 4-cyanopentanoic acid dithiobenzoate is employed as the chain transfer agent in the RAFT mediated polymerization of styrene to form PS with Mn from 2000 g mol-1 to 6000 g mol-1 and PDI < 1.2. To facilitate the cyclization of the polystyrene chains by click coupling, the thiocarbonylthio endgroup is removed and concomitantly replaced by an alkyne bearing function. This is carried out via the radical decomposition of excess azobis(4-cyano valeric acid) (ACVA) modified with an alkyne endgroup in the presence of the thiocarbonylthio-capped PS. The successful click endgroup modifications of several polystyrenes along with the results from the cyclization of a PS with Mn = 4300 g mol-1 are discussed in detail. This improved method avoids the presence of thiocarbonylthio functions in the macrocycle, thus considerably increasing the chemical stability of these polymers. © 2008 Elsevier Ltd. All rights reserved.

Impact and interest:

82 citations in Scopus
Search Google Scholar™
81 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99174
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :80 Export Date: 5 September 2016 CODEN: POLMA Correspondence Address: Stenzel, M.H.; Centre for Advanced Macromolecular Design, School of Chemical Engineering and Industrial Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; email: References: Barner-Kowollik, C., Davis, T.P., Heuts, J.P.A., Stenzel, M.H., Vana, P., Whittaker, M., (2003) J Polym Sci Part A Polym Chem, 41, pp. 365-375; Takolpuckdee, P., Westwood, J., Lewis, D.M., Perrier, S., (2004) Macromol Symp, 216, pp. 23-35; Perrier, S., Takolpuckdee, P., (2005) J Polym Sci Part A Polym Chem, 43, pp. 5347-5393; Quémener, D., LeHellaye, M., Bissett, C., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2007) J Polym Sci Part A Polym Chem, 46, pp. 155-173; Barner, L., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromol Rapid Commun, 28, pp. 539-559; Semlyen, J.A., (1986) Cyclic polymers, , Elsevier Applied Science Publishers, London, New York; Kelen J, Schlotterbeck D, Jaacks V. IUPAC Conference on Macromolecules. Boston; 1971Thilo, E., (1962) Advances in inorganic chemistry and radiochemistry, , Academic Press, New York; Eisenberg, A., (1970) Inorg Macromol Rev, 1, pp. 75-88; Wasserman, E., (1960) J Am Chem Soc, 82, pp. 4433-4434; Schill, G., (1971) Catenanes, rotaxanes and knots, , Academic Press, New York, London; Schill, G.Z., (1969) Angew Chem, 81, p. 996; Harrison, I.T., (1972) J Chem Soc Chem Commun, 4, pp. 231-232; Harrison, I.T., (1974) J Chem Soc Perkin Trans 1, pp. 301-304; Schill, G., Zürcher, C., Vetter, W., (1973) Chem Ber, 106, pp. 228-235; Brochard, F., De Gennes, P.-G., (1977) Macromolecules, 10, pp. 1157-1161; Roovers, J., Toporowski, P.M., (1983) Macromolecules, 16, pp. 843-849; Gooden, J.K., Gross, M.L., Müller, A., Stefanescu, A.D., Wooley, K.L., (1998) J Am Chem Soc, 120, pp. 10180-10186; Clarkson, S.J., Semlyen, J.A., Horska, J., Stepto, R.F.T., (1986) Polymer, 27, pp. 31-32; Sigwalt, P., Masure, M., Moreau, M., Bischoff, R., (1993) Makromol Chem Rapid Commun, 73, pp. 146-166; Fawcett, J.H., Mee, R.A.W., Mc Bride, F.W., (1995) Macromolecules, 28, pp. 1481-1490; Geiser, D., Höcker, H., (1980) Macromolecules, 13, pp. 653-656; Vollmert, B., Huang, J., (1981) Makromol Chem Rapid Commun, pp. 467-472; Hild, G., Hohler, A., Rempp, P., (1980) Eur Polym J, 16, pp. 525-527; Hogen-Esch, T.E., Sundararajan, J., Toreki, W., (1991) Makromol Chem Macromol Symp, 47, pp. 23-42; Hogen-Esch, T.E., Sundarajan, J., (1991) Polym Prepr (Am Chem Soc Div Polym Chem), 32, pp. 604-605; Rique-Lurbet, L., Schappacher, M., Deffieux, A., (1994) Macromolecules, 27, pp. 6318-6324; Lepoittevin, B., Dourges, M.-A., Masure, M., Hemery, P., Baran, K., Cramail, C., (2000) Macromolecules, 33, pp. 8218-8224; Lepoittevin, B., Perrot, X., Masure, M., Hemery, P., (2001) Macromolecules, 34, pp. 425-429; Barner-Kowollik, C., Quinn, J.F., Morsley, D.R., Davis, T.P., (2001) J Polym Sci Part A Polym Chem, 39, p. 1353; He, T., Zheng, G.H., Pan, C.-Y., (2003) Macromolecules, 36, pp. 5960-5966; Laurent, B.A., Grayson, S.M., (2006) J Am Chem Soc, 128, pp. 4238-4239; Whittaker, M.R., Goh, Y.K., Gemici, H., Legge, T.M., Perrier, S., Monteiro, M.J., (2006) Macromolecules, 39, pp. 9028-9034; Xu, J., Ye, J., Liu, S., (2007) Macromolecules, 40, pp. 9103-9110; Qiu, X.-P., Tanaka, F., Winnik, F.M., (2007) Macromolecules, 40, pp. 7069-7071; Quémener, D., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2006) Chem Commun, pp. 5051-5053; Huisgen, R., (1984) 1,3-Dipolar cycloaddition chemistry, , Padwa A. (Ed), Wiley-Interscience, New York; Gondi, S.R., Vogt, A.P., Sumerlin, B.S., (2007) Macromolecules, 40, pp. 474-481; Perrier, S., Takolpuckdee, P., Mars, C.A., (2005) Macromolecules, 38, pp. 2033-2036; Ladmiral, V., Mantovani, G., Clarkson, G.J., Cauet, S., Irwin, J.L., Haddleton, D.M., (2006) J Am Chem Soc, 128, pp. 4823-4830; Dodgson, K., Semlyen, J.A., (1977) Polymer, 18, pp. 1265-1268; Bloomfied, V., Zimm, B.H., (1966) J Chem Phys, 44, pp. 315-323; Lutz, P., McKenna, G.B., Rempp, P., Strazielle, C., (1986) Makromol Chem Rapid Commun, 7, pp. 599-605; Casassa, E.F., (1965) J Polym Sci Part A Polym Chem, 3, pp. 605-614; Pasch, H., Deffieux, A., Ghahary, R., Schapacher, M., Rique-Lurbet, L., (1997) Macromolecules, 30, pp. 98-104; Takano, A., Kushida, Y., Aoki, K., Masuoka, K., Hayashida, K., Cho, D., (2007) Macromolecules, 40, pp. 679-681
Keywords: Copper-catalyzed Huisgen 1,3-dipolar cycloaddition, Macrocyclic polymers, Reversible addition fragmentation chain transfer (RAFT), Catalyst activity, Copper, Cyclization, Cycloaddition, Functional groups, Polymerization, Chain transfer agents, Click chemistry, Huisgen 1,3-dipolar cycloaddition, Polystyrenes, catalyst, chemical modification, polymer property, polystyrene, stability
DOI: 10.1016/j.polymer.2008.03.017
ISSN: 00323861
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 10 Oct 2016 02:41

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page