Simultaneous reversible addition fragmentation chain transfer and ring-opening polymerization

Le Hellaye, M., Lefay, C., Davis, T. P., Stenzel, M. H., & Barner-Kowollik, C. (2008) Simultaneous reversible addition fragmentation chain transfer and ring-opening polymerization. Journal of Polymer Science, Part A: Polymer Chemistry, 46(9).

View at publisher

Abstract

The simultaneous ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) and 2-hydroxyethyl methacrylate (HEMA) polymerization via reversible addition fragmentation chain transfer (RAFT) chemistry and the possible access to graft copolymers with degradable and nondegradable segments is investigated. HEMA and ε-CL are reacted in the presence of cyanoisopropyl dithiobenzoate (CPDB) and tin(II) 2-ethylhexanoate (Sn(Oct)2) under typical ROP conditions (T > 100°C) using toluene as the solvent in order to lead to the graft copolymer PHEMA-g-PCL. Graft copolymer formation is evidenced by a combination of size-exclusion chromatography (SEC) and NMR analyses as well as confirmed by the hydrolysis of the PCL segments of the copolymer. With targeted copolymers containing at least 10% weight of PHEMA and relatively small PHEMA backbones (ca. 5,000-10,000 g mol-1) the copolymer grafting density is higher than 90%. The ratio of free HEMA-PCL homopolymer produced during the "one-step" process was found to depend on the HEMA concentration, as well as the half-life time of the radical initiator used. © 2008 Wiley Periodicals, Inc.

Impact and interest:

29 citations in Scopus
Search Google Scholar™
23 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99188
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :28
Export Date: 5 September 2016
CODEN: JPACE
Correspondence Address: Barner-Kowollik, C.; Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; email: c.barner-kowollik@unsw.edu.au
References: Solomon, D.H., (2005) J Polym Sci Part A: Polym Chem, 43, pp. 5748-5764; Hawker, C.J., Bosman, A.W., Harth, E., (2001) Chem Rev, 101, pp. 3661-3688; Wang, J.-S., Matyjaszewski, K., (1995) J Am Chem Soc, 117, pp. 5614-5615; Matyjaszewski, K., Xia, J.H., (2001) Chem Rev, 101, pp. 2921-2990; Kamigaito, M., Ando, T., Sawamoto, M., (2001) Chem Rev, 101, pp. 3689-3745; Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Le, T.P.T., Mayadunne, R.T.A., Meijs, G.F., Thang, S.H., (1998) Macromolecules, 31, pp. 5559-5562; Moad, G., Chiefari, J., Chong, Y.K., Krstina, J., Mayadunne, R.T.A., Postma, A., Rizzardo, E., Thang, S.H., (2000) Polym Int, 49, pp. 993-1001; Barner-Kowollik, C., Davis, T.P., Heuts, J.P.A., Stenzel, M.H., Vana, P., Whittaker, M., (2003) J Polym Sei Part A: Polym Chem, 41, pp. 365-375; Barner, L., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromol Rapid Commun, 28, pp. 539-559; Bernaerts, K.V., Du Prez, F.E., (2006) Prog Polym Sci, 31, pp. 671-722; Wang, S., Cheng, Z., Zhu, J., Zhang, Z., Zhu, X., (2007) J Polym Sci Part A: Polym Chem, 45, pp. 5318-5328; Stridsberg, K.M., Ryner, M., Albertsson, A.-C., (2002) Adv Polym Sci, 157, pp. 41-65; Jakubowski, W., Matyjaszewski, K., (2006) Macromol Symp, 240, pp. 213-223; You, Y.-Z., Hong, C.-Y., Wang, W.-P., Lu, W.-Q., Pan, C.-Y., (2004) Macromolecules, 37, pp. 9761-9767; Glaied, O., Delaite, C., Dumas, P., (2006) J Polym Sci Part A: Polym Chem, 44, pp. 1796-1806; Han, D.-H., Pan, C.-Y., (2007) J Polym Sci Part A: Polym Chem, 45, pp. 789-799; Xu, X., Huang, J., (2006) J Polym Sci Part A: Polym Chem, 44, pp. 467-476; Xu, X., Huang, J., (2004) J Polym Sci Part A: Polym Chem, 42, pp. 5523-5529; Xu, X., Jia, Z., Sun, R., Huang, J., (2006) J Polym Sci Part A: Polym Chem, 44, pp. 4396-44408; Villarroya, S., Zhou, J., Thurecht, K.J., Howdle, S.M., (2006) Macromolecules, 39, pp. 9080-9086; Luan, B., Zhang, B.-Q., Pan, C.-Y., (2006) J Polym Sci Part A: Polym Chem, 44, pp. 549-560; Mecerreyes, D., Moineau, G., Dubois, P., Jérôme, R., Hedrick, J.L., Hawker, C.J., Malmström, E.E., Trollsas, M., (1998) Angew Chem Int Ed, 37, pp. 1274-1276; Thurecht, K.J., Gregory, A.M., Villarroya, S., Zhou, J., Heise, A., Howdle, S.M., (2006) Chem Commun, pp. 4383-4385; Nasser-Eddine, M., Delaite, C., Hurtrez, G., Dumas, P., (2005) Eur Polym J, 41, pp. 313-318; Huang, C.-E., Kuo, S.-W., Lee, H.-F., Chang, E.-C., (2005) Polymer, 46, pp. 1561-1565; Zhou, J., Villarroya, S., Wang, W.X., Wyatt, M.F., Duxbury, C.J., Thurecht, K.J., Howdle, S.M., (2006) Macromolecules, 39, pp. 5352-5358; Wang, W.-P., You, Y.-Z., Hong, C.-Y., Xu, J., Pan, C.-Y., (2005) Polymer, 46, pp. 9489-9494; Rodriguez-Parada, J.M., Percec, V., (1986) J Polym Sci Part A: Polym Chem, 24, pp. 1363-1378; Hao, X., Heuts, J.P.A., Barner-Kowollik, C., Davis, T.P., Evans, E., (2003) J Polym Sci Part A: Polym Chem, 41, pp. 2949-2963; Albertsson, A.-C., Varma, I.K., (2002) Adv Polym Sci, 157, pp. 1-40; Albertsson, A.-C., Varma, I.K., (2003) Biomacromolecules, 4, pp. 1466-1486; Fijten, M.W.M., Meier, M.A.R., Hoogenboom, R., Schubert, U.S., (2004) J Polym Sci Part A: Polym Chem, 42, pp. 5775-5783; Hoogenboom, R., Schubert, U.S., Van Camp, W., Du Prez, F.E., (2005) Macromolecules, 38, pp. 7653-7659; Plummer, R., Hill, D.J.T., Whittaker, A.K., (2006) Macromolecules, 39, pp. 3878-3889; Zhang, D., Macias, C., Ortiz, C., (2005) Macromolecules, 38, pp. 2530-2534; Jia, Z., Zhou, Y., Yan, D., (2005) J Polym Sci Part A: Polym Chem, 43, pp. 6534-6544; Yuan, W., Yuan, J., Zhou, M., Sui, X., (2006) J Polym Sci Part A: Polym Chem, 44, pp. 6575-6586; VAZO88: ki = 3.74·1010 min -1 and Eai = 93.561 J mol-1; AIBN: ki = 4.22·1010 min-1 and Eai = 84.319 J mol-1. k(T) = ki exp(-Eai/RT) and t1/2 = In 2/k(T)UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-42549150359&partnerID=40&md5=e1b1fc291f0fbb1b944fa32d813789ca
Keywords: ε-caprolactone, 2-hydroxyethyl methacrylate (HEMA), NMR, One-step synthesis, Reversible addition fragmentation chain transfer (RAFT), Ring-opening polymerization (ROP), Hydrolysis, Nuclear magnetic resonance spectroscopy, Ring opening polymerization, Size exclusion chromatography, Toluene, Copolymer grafting density, Graft copolymer formation, Copolymers
DOI: 10.1002/pola.22647
ISSN: 0887624X
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 10 Oct 2016 04:11

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page