Optimum reaction conditions for the synthesis of macromonomers via the high-temperature polymerization of acrylates

Junkers, T. & Barner-Kowollik, C. (2009) Optimum reaction conditions for the synthesis of macromonomers via the high-temperature polymerization of acrylates. Macromolecular Theory and Simulations, 18(7-8).

View at publisher

Abstract

Macromonomers are valuable synthetic building blocks: They can be copolymerized with low molecular weight monomers to generate brush-like structures or serve as conjugation substrates in pericylic, metathesis, and thiolene reactions. Based on earlier reports on the facile high temperature formation of macromonomers from acrylates, a complex kinetic model is developed which accounts for the key reactions constituting the macromonomer formation process. On the basis of the kinetic model, the important rate coefficients governing acrylate polymerization (e.g., β-scission and termination rate coefficients of midchain radicals, backbiting and intramolecular chain transfer rate coefficients) as well as the reaction conditions (e.g., initial monomer concentration, reaction temperature, radical flux) are systematically varied and their influence on the synthetic success is critically evaluated. The systematic coefficient variation reveals that there exist optimum reaction conditions under which the high temperature macromonomers formation may be conducted with maximum success. The present study provides a concise summary of these conditions. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Impact and interest:

18 citations in Scopus
Search Google Scholar™
19 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 99219
Item Type: Journal Article
Refereed: Yes
Additional Information: Cited By :18
Export Date: 5 September 2016
CODEN: MTHSE
Correspondence Address: Junkers, T.; Institut für Technische Chemie und Polymerchemie, Universität Karlsruhe (TH), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany; email: thomas.junkers@polymer.uni-karlsruhe.de
References: Scott, G.E., Senogles, E.J., (1970) Macromol. Sci. Chem., A4, p. 1105; Scott, G.E., Senogles, E.J., (1973) Sci. Rev. Macromol. Chem., C9, p. 49; Scott, G.E., Senogles, E.J., (1974) Macromol. Sci. Chem., A8, p. 753; Ahmad, N.M., Heatley, F., Lovell, P.A., (1998) Macromolecules, 31, p. 2822; Junkers, T., Barner-Kowollik, C., (2008) J. Polym. Sci. Polym. Chem., 46, p. 7585; Nikitin, A.N., Hutchinson, R.A., (2005) Macromolecules, 38, p. 1581; Nikitin, A.N., Hutchinson, R.A., (2006) Macromol. Theory Simul., 15, p. 128; Nikitin, A.N., Castignolles, P., Charleux, B., Vairon, J.-P., (2003) Macromol. Rapid Commun., 24, p. 778; Nikitin, A.N., Hutchinson, R.A., Buback, M., Hesse, P., (2007) Macromolecules, 40, p. 8631; Boschmann, D., Vana, P., (2007) Macromolecules, 40, p. 2683; Plessis, C., Arzamendi, G., Alberdi, J.M., Van Herk, A.M., Leiza, J.R., Asua, J.R.J.M., (2003) Macromol. Rapid Commun., 24, p. 173; Chiefari, J., Jeffery, J., Mayadunne, R.T.A., Moad, G., Rizzardo, E., Thang, S.H., (1999) Macromolecules, 32, p. 7700; Junkers, T., Koo, S.P.S., Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2007) Macromolecules, 40, p. 8906; Junkers, T., (2008) Aust. J. Chem., 61, p. 646; Koo, S.P.S., Junkers, T., Barner-Kowollik, C., (2009) Macromolecules, 42, p. 62; Junkers, T., Bennet, F., Koo, S.P.S., Barner-Kowollik, C., (2008) J. Polym. Sci. Polym. Chem., 46, p. 3433; Willemse, R.X.E., Van Herk, A.M., Panchenko, E., Junkers, T., Buback, M., (2005) Macromolecules, 38, p. 5098; Buback, M., Hesse, P., Junkers, T., Sergeeva, T., Theis, T., (2008) Macromolecules, 41, p. 288; Junkers, T., Koo, S.P.S., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2007) Macromolecules, 40, p. 8906; Koo, S.P.S., Junkers, T., Barner-Kowollik, C., (2009) Macromolecules, 42, p. 62; Buback, M., Junkers, T., Müller, M., (2009) Polymer, 50, p. 3111; Szablan, Z., Huaming, M., Adler, M., Stenzel, M.H., Davis, T.P., Barner-Kowollik, C., (2007) J. Polym. Sci. Polym. Chem., 45, p. 1931; Szablan, Z., Ah Toy, A., Davis, T.P., Hao, X., Stenzel, M.H., Barner-Kowollik, C., (2004) J. Polym. Sci. Polym. Chem., 42, p. 2432; Szablan, Z., Ah. Toy, A., Terrenoire, A., Davis, T.P., Stenzel, M.S., Müller, A.H.E., Barner-Kowollik, C., (2006) J. Polym. Sci. Polym. Chem., 44, p. 3692; P. Hesse, PhD Thesis, Georg-August Universität Göttingen, Göttingen, Germany 2008J. Barth, Diploma Thesis Georg-August Universität Göttingen, Göttingen, Germany 2008Barner-Kowollik, C., Quinn, J.F., Morsley, D., Davis, T.P., (2001) J. Polym. Sci. Polym. Chem., 39, p. 1353; Wulkow, M., Busch, M., Davis, T.P., Barner-Kowollik, C., (2004) J. Polym. Sci. Polym. Chem., 42, p. 1441; Li, D.H., Grady, M.C., Hutchinson, R.A., (2005) Ind. Eng. Chem. Res., 44, p. 2506; Wang, W., Hutchinson, R.A., (2008) Macromol. React. Eng., 2, p. 199; Busch, M., Müller, M., (2004) Macromol. Symp., 206, p. 399; Hirano, T., Yamada, B., (2003) Polymer, 44, p. 347; Roedel, M.J., (1953) J. Am. Chem. Soc., 75, p. 6110; Beuermann, S., Buback, M., (2002) Prog. Polym. Sci., 27, p. 191; Barner-Kowollik, C., Buback, M., Charleux, B., Coote, M.L., Drache, M., Fukuda, T., Goto, A., Vana, P., (2006) J. Poly. Sci. Polym. Chem., 44, p. 5809. , It is an interesting observation that the discussion of bscission rates of acrylate derived MCRs is related to the ongoing debate about fragmentation rates of intermediate RAFT radicals that are related in their structure to MCRs. In this context, it is worth considering that the few available fragmentation rate coefficients for MRCs-when adjusted to 60 8C-give values that suggest a relatively slow fragmentation with lifetimes (with regard to fragmentation) of around a second. These lifetimes are in the same order of magnitude as those postulated for certain RAFT intermediate radicals. It is an outstanding research effort to reconcile these observations with other reports that suggest that RAFT intermediate radicals feature lifetimes of less than microseconds. For a detailed overview over the question of the stability of RAFT midchain radicals, the reader is referred to; A.-M. Zorn, Diploma Thesis Karlsruhe University, Karlsruhe, Germany 2009Benson, S.B., North, A.M., (1962) J. Am. Chem. Soc., 84, p. 953; Moad, G., Rizzardo, E., Thang, S.H., (2008) Polymer, 49, p. 1079; Theis, A., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C., (2006) Polymer, 47, p. 999
Keywords: Chain transfer rates, Complex kinetic models, Formation process, High temperature, High-temperature polymerization, Key reactions, Kinetic models, Low molecular weight, Macro-monomers, Macromonomer, Mid-chain radicals, Monomer concentration, Optimum reaction conditions, Radical fluxes, Rate coefficients, Reaction conditions, Reaction temperature, Synthetic building blocks, Termination rate coefficients, Thiol-ene reactions, Acrylic monomers, Kinetic theory, Monomers, Salts, Synthesis (chemical), Free radical polymerization
DOI: 10.1002/mats.200900025
ISSN: 10221344
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 22 Sep 2016 04:50
Last Modified: 10 Oct 2016 00:47

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page